磁力狗
导航切换
首页
最新地址
最新地址
最新地址
最新地址
搜索磁力
BT种子名称
Coursera - Applied Machine Learning in Python
请保存以下最新地址
clgou.icu
clgougou.cc
clg.dog
clgougou.com
BT种子基本信息
种子哈希:
85fdccc835274e9bc8c02254fbb1278fa1cef4a2
文档大小:
579.9 MB
文档个数:
139
个文档
下载次数:
1272
次
下载速度:
极快
收录时间:
2023-10-16
最近下载:
2025-01-21
DMCA/屏蔽:
DMCA/屏蔽
下载磁力链接
magnet:?xt=urn:btih:85FDCCC835274E9BC8C02254FBB1278FA1CEF4A2
复制磁力链接到
PikPak
、utorrent、Bitcomet、迅雷、115、百度网盘等下载工具进行下载。
下载BT种子
磁力链接
种子下载
迅雷下载
二维码
YouTube成人版
91视频
91短视频
51品茶
逼哩逼哩
萝莉岛
欲漫涩
草榴社区
含羞草
抖阴破解版
TikTok成人版
成人快手
乱伦社区
91AV
暗网禁地
文档列表
03_module-3/01_module-3-evaluation/01_model-evaluation-selection.mp4
33.3 MB
02_module-2/01_module-2-supervised-machine-learning/05_linear-regression-least-squares.mp4
31.8 MB
02_module-2/01_module-2-supervised-machine-learning/06_linear-regression-ridge-lasso-and-polynomial-regression.mp4
30.7 MB
02_module-2/01_module-2-supervised-machine-learning/12_decision-trees.mp4
28.8 MB
04_module-4/01_module-4-supervised-machine-learning-part-2/05_neural-networks.mp4
28.4 MB
01_module-1/01_module-1-fundamentals-of-machine-learning-intro-to-scikit-learn/07_k-nearest-neighbors-classification.mp4
28.2 MB
01_module-1/01_module-1-fundamentals-of-machine-learning-intro-to-scikit-learn/03_key-concepts-in-machine-learning.mp4
24.9 MB
03_module-3/01_module-3-evaluation/08_model-selection-optimizing-classifiers-for-different-evaluation-metrics.mp4
21.0 MB
04_module-4/01_module-4-supervised-machine-learning-part-2/08_data-leakage.mp4
20.1 MB
01_module-1/01_module-1-fundamentals-of-machine-learning-intro-to-scikit-learn/05_an-example-machine-learning-problem.mp4
20.0 MB
02_module-2/01_module-2-supervised-machine-learning/01_introduction-to-supervised-machine-learning.mp4
19.9 MB
02_module-2/01_module-2-supervised-machine-learning/08_linear-classifiers-support-vector-machines.mp4
19.2 MB
02_module-2/01_module-2-supervised-machine-learning/04_k-nearest-neighbors-classification-and-regression.mp4
18.7 MB
01_module-1/01_module-1-fundamentals-of-machine-learning-intro-to-scikit-learn/02_introduction.mp4
18.3 MB
04_module-4/01_module-4-supervised-machine-learning-part-2/03_random-forests.mp4
18.3 MB
03_module-3/01_module-3-evaluation/05_multi-class-evaluation.mp4
17.5 MB
02_module-2/01_module-2-supervised-machine-learning/07_logistic-regression.mp4
17.2 MB
03_module-3/01_module-3-evaluation/02_confusion-matrices-basic-evaluation-metrics.mp4
17.0 MB
01_module-1/01_module-1-fundamentals-of-machine-learning-intro-to-scikit-learn/06_examining-the-data.mp4
16.4 MB
02_module-2/01_module-2-supervised-machine-learning/02_overfitting-and-underfitting.mp4
16.3 MB
02_module-2/01_module-2-supervised-machine-learning/11_cross-validation.mp4
13.5 MB
04_module-4/01_module-4-supervised-machine-learning-part-2/02_naive-bayes-classifiers.mp4
12.9 MB
02_module-2/01_module-2-supervised-machine-learning/10_kernalized-support-vector-machines.mp4
12.7 MB
04_module-4/01_module-4-supervised-machine-learning-part-2/06_deep-learning-optional.mp4
11.3 MB
02_module-2/01_module-2-supervised-machine-learning/09_multi-class-classification.mp4
10.4 MB
03_module-3/01_module-3-evaluation/03_classifier-decision-functions.mp4
10.4 MB
03_module-3/01_module-3-evaluation/06_regression-evaluation.mp4
10.1 MB
04_module-4/01_module-4-supervised-machine-learning-part-2/04_gradient-boosted-decision-trees.mp4
8.9 MB
03_module-3/01_module-3-evaluation/04_precision-recall-and-roc-curves.mp4
8.5 MB
01_module-1/01_module-1-fundamentals-of-machine-learning-intro-to-scikit-learn/04_python-tools-for-machine-learning.mp4
8.1 MB
02_module-2/01_module-2-supervised-machine-learning/03_supervised-learning-datasets.mp4
7.6 MB
04_module-4/01_module-4-supervised-machine-learning-part-2/01_introduction.mp4
4.8 MB
03_module-3/01_module-3-evaluation/07_practical-guide-to-controlled-experiments-on-the-web.pdf
504.9 kB
.pad/262034
262.0 kB
.pad/262032
262.0 kB
.pad/261967
262.0 kB
.pad/257419
257.4 kB
.pad/255887
255.9 kB
.pad/255247
255.2 kB
.pad/255242
255.2 kB
.pad/254430
254.4 kB
.pad/254125
254.1 kB
.pad/253649
253.6 kB
.pad/253506
253.5 kB
.pad/252889
252.9 kB
.pad/252032
252.0 kB
.pad/251554
251.6 kB
.pad/250672
250.7 kB
.pad/249804
249.8 kB
.pad/249298
249.3 kB
.pad/249022
249.0 kB
.pad/248837
248.8 kB
.pad/246955
247.0 kB
.pad/246572
246.6 kB
.pad/246234
246.2 kB
.pad/245958
246.0 kB
.pad/245914
245.9 kB
.pad/245690
245.7 kB
.pad/245058
245.1 kB
.pad/244669
244.7 kB
.pad/244668
244.7 kB
.pad/244648
244.6 kB
.pad/244604
244.6 kB
.pad/243839
243.8 kB
.pad/242872
242.9 kB
.pad/237378
237.4 kB
.pad/235321
235.3 kB
.pad/234301
234.3 kB
.pad/233958
234.0 kB
.pad/233575
233.6 kB
.pad/233106
233.1 kB
.pad/231340
231.3 kB
.pad/219385
219.4 kB
.pad/217468
217.5 kB
.pad/210248
210.2 kB
.pad/205163
205.2 kB
.pad/202856
202.9 kB
.pad/196560
196.6 kB
.pad/196020
196.0 kB
.pad/191163
191.2 kB
.pad/189948
189.9 kB
.pad/163748
163.7 kB
.pad/163126
163.1 kB
02_module-2/01_module-2-supervised-machine-learning/13_a-few-useful-things-to-know-about-machine-learning_cacm12.pdf
160.2 kB
.pad/160028
160.0 kB
.pad/113926
113.9 kB
.pad/104409
104.4 kB
.pad/103859
103.9 kB
.pad/101966
102.0 kB
.pad/97103
97.1 kB
.pad/96858
96.9 kB
.pad/86396
86.4 kB
.pad/82524
82.5 kB
.pad/79395
79.4 kB
.pad/65514
65.5 kB
.pad/60208
60.2 kB
.pad/52339
52.3 kB
.pad/42774
42.8 kB
03_module-3/01_module-3-evaluation/01_model-evaluation-selection.en.srt
30.8 kB
.pad/30136
30.1 kB
02_module-2/01_module-2-supervised-machine-learning/12_decision-trees.en.srt
29.0 kB
04_module-4/01_module-4-supervised-machine-learning-part-2/05_neural-networks.en.srt
28.6 kB
02_module-2/01_module-2-supervised-machine-learning/05_linear-regression-least-squares.en.srt
28.2 kB
02_module-2/01_module-2-supervised-machine-learning/06_linear-regression-ridge-lasso-and-polynomial-regression.en.srt
27.8 kB
01_module-1/01_module-1-fundamentals-of-machine-learning-intro-to-scikit-learn/07_k-nearest-neighbors-classification.en.srt
26.8 kB
.pad/19428
19.4 kB
01_module-1/01_module-1-fundamentals-of-machine-learning-intro-to-scikit-learn/03_key-concepts-in-machine-learning.en.srt
19.3 kB
03_module-3/01_module-3-evaluation/08_model-selection-optimizing-classifiers-for-different-evaluation-metrics.en.srt
18.3 kB
02_module-2/01_module-2-supervised-machine-learning/07_logistic-regression.en.srt
17.5 kB
02_module-2/01_module-2-supervised-machine-learning/04_k-nearest-neighbors-classification-and-regression.en.srt
17.5 kB
02_module-2/01_module-2-supervised-machine-learning/01_introduction-to-supervised-machine-learning.en.srt
17.5 kB
04_module-4/01_module-4-supervised-machine-learning-part-2/03_random-forests.en.srt
17.5 kB
04_module-4/01_module-4-supervised-machine-learning-part-2/08_data-leakage.en.srt
17.1 kB
01_module-1/01_module-1-fundamentals-of-machine-learning-intro-to-scikit-learn/02_introduction.en.srt
16.5 kB
03_module-3/01_module-3-evaluation/02_confusion-matrices-basic-evaluation-metrics.en.srt
16.2 kB
02_module-2/01_module-2-supervised-machine-learning/02_overfitting-and-underfitting.en.srt
16.2 kB
02_module-2/01_module-2-supervised-machine-learning/08_linear-classifiers-support-vector-machines.en.srt
15.9 kB
03_module-3/01_module-3-evaluation/05_multi-class-evaluation.en.srt
15.6 kB
01_module-1/01_module-1-fundamentals-of-machine-learning-intro-to-scikit-learn/05_an-example-machine-learning-problem.en.srt
15.2 kB
02_module-2/01_module-2-supervised-machine-learning/11_cross-validation.en.srt
13.3 kB
01_module-1/01_module-1-fundamentals-of-machine-learning-intro-to-scikit-learn/06_examining-the-data.en.srt
12.3 kB
.pad/11821
11.8 kB
04_module-4/01_module-4-supervised-machine-learning-part-2/02_naive-bayes-classifiers.en.srt
11.5 kB
04_module-4/01_module-4-supervised-machine-learning-part-2/06_deep-learning-optional.en.srt
10.6 kB
02_module-2/01_module-2-supervised-machine-learning/10_kernalized-support-vector-machines.en.srt
10.1 kB
03_module-3/01_module-3-evaluation/03_classifier-decision-functions.en.srt
9.3 kB
04_module-4/01_module-4-supervised-machine-learning-part-2/04_gradient-boosted-decision-trees.en.srt
8.6 kB
02_module-2/01_module-2-supervised-machine-learning/09_multi-class-classification.en.srt
8.5 kB
.pad/8338
8.3 kB
03_module-3/01_module-3-evaluation/06_regression-evaluation.en.srt
8.0 kB
03_module-3/01_module-3-evaluation/04_precision-recall-and-roc-curves.en.srt
7.7 kB
02_module-2/01_module-2-supervised-machine-learning/03_supervised-learning-datasets.en.srt
6.9 kB
01_module-1/01_module-1-fundamentals-of-machine-learning-intro-to-scikit-learn/04_python-tools-for-machine-learning.en.srt
6.3 kB
.pad/5709
5.7 kB
04_module-4/01_module-4-supervised-machine-learning-part-2/01_introduction.en.srt
4.7 kB
Sites you may like!/Join Us - HAX4EVER.txt
177 Bytes
Sites you may like!/TGX - Torrent Galaxy.url
115 Bytes
Sites you may like!/OG - 1337X.TO.url
112 Bytes
Sites you may like!/APKSOUP - Premium Apps!.url
110 Bytes
==查看完整文档列表==
上一个:
resgate-suicida-north-sea-hijack-1980-v.-menor
4.2 GB
猜你喜欢
Applied Acoustics Systems - Chromaphone 2.1.1 VSTi,...
68.8 MB
CGCircuit – Applied Houdini Dynamics Volumes 5
550.6 MB
Applied Biochemistry and Biotechnology
5.3 GB
Applied Houdini Dynamics 4
390.0 MB
CGcircuit – Applied Houdini Rigids I
785.1 MB
Applied Houdini - Rigids IV
1.7 GB
[CourseClub.NET] Coursera - Applied Machine Learning in Python
923.9 MB
DorcelClub.17.12.13.Alexis.Brill.An.Applied.Student.XXX.S...
166.7 MB
Emergence.S01E11.Applied.Sciences.1080p.AMZN.WEBRip.DDP5....
3.1 GB
Applied.Acoustics.Systems.STRUM.GS.4.3.0
171.8 MB