磁力狗
导航切换
首页
最新地址
最新地址
最新地址
最新地址
搜索磁力
BT种子名称
[CourseClub.NET] Coursera - Applied Machine Learning in Python
请保存以下最新地址
clgou.icu
clgougou.cyou
clg.dog
磁力.dog
BT种子基本信息
种子哈希:
2aebbd9a938b03ea4de16737994cb85b9fbdfd68
文档大小:
923.9 MB
文档个数:
73
个文档
下载次数:
3101
次
下载速度:
极快
收录时间:
2020-01-24
最近下载:
2025-01-12
DMCA/屏蔽:
DMCA/屏蔽
下载磁力链接
magnet:?xt=urn:btih:2AEBBD9A938B03EA4DE16737994CB85B9FBDFD68
复制磁力链接到
PikPak
、utorrent、Bitcomet、迅雷、115、百度网盘等下载工具进行下载。
下载BT种子
磁力链接
种子下载
迅雷下载
二维码
YouTube成人版
91视频
91短视频
51品茶
逼哩逼哩
萝莉岛
欲漫涩
草榴社区
含羞草
抖阴破解版
TikTok成人版
成人快手
乱伦社区
91AV
暗网禁地
文档列表
003.Module 3 Evaluation/019. Model Evaluation & Selection.mp4
48.3 MB
001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/002. Key Concepts in Machine Learning.mp4
46.7 MB
004.Module 4 Supervised Machine Learning - Part 2/029. Neural Networks.mp4
43.5 MB
002.Module 2 Supervised Machine Learning/012. Linear Regression Ridge, Lasso, and Polynomial Regression.mp4
41.9 MB
002.Module 2 Supervised Machine Learning/016. Kernelized Support Vector Machines.mp4
41.0 MB
002.Module 2 Supervised Machine Learning/007. Introduction to Supervised Machine Learning.mp4
39.7 MB
002.Module 2 Supervised Machine Learning/018. Decision Trees.mp4
39.7 MB
001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/006. K-Nearest Neighbors Classification.mp4
38.0 MB
003.Module 3 Evaluation/025. Model Selection Optimizing Classifiers for Different Evaluation Metrics.mp4
36.2 MB
004.Module 4 Supervised Machine Learning - Part 2/031. Data Leakage.mp4
34.5 MB
001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/005. Examining the Data.mp4
33.8 MB
001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/004. An Example Machine Learning Problem.mp4
33.3 MB
001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/001. Introduction.mp4
32.6 MB
002.Module 2 Supervised Machine Learning/011. Linear Regression Least-Squares.mp4
31.5 MB
005.Optional Unsupervised Machine Learning/034. Clustering.mp4
28.5 MB
004.Module 4 Supervised Machine Learning - Part 2/027. Random Forests.mp4
27.7 MB
002.Module 2 Supervised Machine Learning/014. Linear Classifiers Support Vector Machines.mp4
23.8 MB
002.Module 2 Supervised Machine Learning/010. K-Nearest Neighbors Classification and Regression.mp4
23.6 MB
004.Module 4 Supervised Machine Learning - Part 2/026. Naive Bayes Classifiers.mp4
22.4 MB
003.Module 3 Evaluation/020. Confusion Matrices & Basic Evaluation Metrics.mp4
21.8 MB
002.Module 2 Supervised Machine Learning/013. Logistic Regression.mp4
21.3 MB
002.Module 2 Supervised Machine Learning/017. Cross-Validation.mp4
21.0 MB
003.Module 3 Evaluation/023. Multi-Class Evaluation.mp4
20.7 MB
002.Module 2 Supervised Machine Learning/008. Overfitting and Underfitting.mp4
20.5 MB
004.Module 4 Supervised Machine Learning - Part 2/030. Deep Learning (Optional).mp4
18.3 MB
003.Module 3 Evaluation/024. Regression Evaluation.mp4
17.8 MB
005.Optional Unsupervised Machine Learning/033. Dimensionality Reduction and Manifold Learning.mp4
16.9 MB
002.Module 2 Supervised Machine Learning/015. Multi-Class Classification.mp4
16.2 MB
001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/003. Python Tools for Machine Learning.mp4
13.5 MB
003.Module 3 Evaluation/021. Classifier Decision Functions.mp4
13.3 MB
004.Module 4 Supervised Machine Learning - Part 2/028. Gradient Boosted Decision Trees.mp4
12.4 MB
002.Module 2 Supervised Machine Learning/009. Supervised Learning Datasets.mp4
11.8 MB
005.Optional Unsupervised Machine Learning/032. Introduction.mp4
11.2 MB
006.Conclusion/035. Conclusion.mp4
10.4 MB
003.Module 3 Evaluation/022. Precision-recall and ROC curves.mp4
9.7 MB
003.Module 3 Evaluation/019. Model Evaluation & Selection.srt
30.8 kB
002.Module 2 Supervised Machine Learning/018. Decision Trees.srt
29.0 kB
004.Module 4 Supervised Machine Learning - Part 2/029. Neural Networks.srt
28.6 kB
002.Module 2 Supervised Machine Learning/012. Linear Regression Ridge, Lasso, and Polynomial Regression.srt
27.8 kB
001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/006. K-Nearest Neighbors Classification.srt
26.8 kB
002.Module 2 Supervised Machine Learning/016. Kernelized Support Vector Machines.srt
26.2 kB
002.Module 2 Supervised Machine Learning/007. Introduction to Supervised Machine Learning.srt
22.7 kB
002.Module 2 Supervised Machine Learning/011. Linear Regression Least-Squares.srt
21.8 kB
005.Optional Unsupervised Machine Learning/034. Clustering.srt
20.4 kB
001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/002. Key Concepts in Machine Learning.srt
19.3 kB
003.Module 3 Evaluation/025. Model Selection Optimizing Classifiers for Different Evaluation Metrics.srt
18.6 kB
002.Module 2 Supervised Machine Learning/013. Logistic Regression.srt
17.5 kB
002.Module 2 Supervised Machine Learning/010. K-Nearest Neighbors Classification and Regression.srt
17.5 kB
004.Module 4 Supervised Machine Learning - Part 2/027. Random Forests.srt
17.5 kB
004.Module 4 Supervised Machine Learning - Part 2/031. Data Leakage.srt
17.1 kB
001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/001. Introduction.srt
16.5 kB
003.Module 3 Evaluation/020. Confusion Matrices & Basic Evaluation Metrics.srt
16.2 kB
002.Module 2 Supervised Machine Learning/008. Overfitting and Underfitting.srt
16.2 kB
002.Module 2 Supervised Machine Learning/014. Linear Classifiers Support Vector Machines.srt
15.9 kB
003.Module 3 Evaluation/023. Multi-Class Evaluation.srt
15.6 kB
001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/004. An Example Machine Learning Problem.srt
15.2 kB
005.Optional Unsupervised Machine Learning/033. Dimensionality Reduction and Manifold Learning.srt
13.8 kB
002.Module 2 Supervised Machine Learning/017. Cross-Validation.srt
13.3 kB
001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/005. Examining the Data.srt
12.3 kB
004.Module 4 Supervised Machine Learning - Part 2/026. Naive Bayes Classifiers.srt
11.5 kB
004.Module 4 Supervised Machine Learning - Part 2/030. Deep Learning (Optional).srt
10.6 kB
003.Module 3 Evaluation/021. Classifier Decision Functions.srt
9.3 kB
004.Module 4 Supervised Machine Learning - Part 2/028. Gradient Boosted Decision Trees.srt
8.6 kB
002.Module 2 Supervised Machine Learning/015. Multi-Class Classification.srt
8.5 kB
003.Module 3 Evaluation/024. Regression Evaluation.srt
8.0 kB
003.Module 3 Evaluation/022. Precision-recall and ROC curves.srt
7.7 kB
002.Module 2 Supervised Machine Learning/009. Supervised Learning Datasets.srt
6.9 kB
005.Optional Unsupervised Machine Learning/032. Introduction.srt
6.6 kB
001.Module 1 Fundamentals of Machine Learning - Intro to SciKit Learn/003. Python Tools for Machine Learning.srt
6.3 kB
006.Conclusion/035. Conclusion.srt
4.0 kB
[CourseClub.NET].url
123 Bytes
[FreeCourseSite.Com].url
53 Bytes
[DesireCourse.Com].url
51 Bytes
==查看完整文档列表==
上一个:
DVDMS239MP4
1.7 GB
猜你喜欢
Applied Acoustics Systems - Chromaphone 2.1.1 VSTi,...
68.8 MB
CGCircuit – Applied Houdini Dynamics Volumes 5
550.6 MB
Applied Biochemistry and Biotechnology
5.3 GB
Applied Houdini Dynamics 4
390.0 MB
CGcircuit – Applied Houdini Rigids I
785.1 MB
Applied Houdini - Rigids IV
1.7 GB
DorcelClub.17.12.13.Alexis.Brill.An.Applied.Student.XXX.S...
166.7 MB
Emergence.S01E11.Applied.Sciences.1080p.AMZN.WEBRip.DDP5....
3.1 GB
Applied.Acoustics.Systems.STRUM.GS.4.3.0
171.8 MB
Applied Acoustics Chromaphone v2.0.3.WiN.OSX.Incl.Keygen
61.0 MB