磁力狗
导航切换
首页
最新地址
最新地址
最新地址
最新地址
搜索磁力
BT种子名称
[CourseClub.NET] Coursera - Practical Reinforcement Learning
请保存以下最新地址
clgou.icu
clgougou.cyou
clg.dog
磁力.dog
BT种子基本信息
种子哈希:
da9c0f62f333db6c8ec4225316ae6b96055ad1b3
文档大小:
1.5 GB
文档个数:
110
个文档
下载次数:
2331
次
下载速度:
极快
收录时间:
2020-07-01
最近下载:
2024-12-12
DMCA/屏蔽:
DMCA/屏蔽
下载磁力链接
magnet:?xt=urn:btih:DA9C0F62F333DB6C8EC4225316AE6B96055AD1B3
复制磁力链接到
PikPak
、utorrent、Bitcomet、迅雷、115、百度网盘等下载工具进行下载。
下载BT种子
磁力链接
种子下载
迅雷下载
二维码
YouTube成人版
91视频
91短视频
51品茶
逼哩逼哩
萝莉岛
欲漫涩
草榴社区
含羞草
抖阴破解版
TikTok成人版
成人快手
乱伦社区
91AV
暗网禁地
文档列表
013.Honor/033. Partial observability.mp4
60.0 MB
019.Planning with Monte Carlo Tree Search/053. Introduction to planning.mp4
54.1 MB
011.Limitations of Tabular Methods/025. Supervised & Reinforcement Learning.mp4
53.1 MB
005.Striving for reward/014. Reward design.mp4
52.1 MB
011.Limitations of Tabular Methods/027. Difficulties with Approximate Methods.mp4
49.3 MB
018.Uncertainty-based exploration/052. Bayesian UCB.mp4
42.8 MB
009.On-policy vs off-policy/023. Accounting for exploration. Expected Value SARSA..mp4
39.6 MB
006.Bellman equations/015. State and Action Value Functions.mp4
39.1 MB
003.Black box optimization/006. Crossentropy method.mp4
37.8 MB
014.Policy-based RL vs Value-based RL/034. Intuition.mp4
36.6 MB
013.Honor/032. More DQN tricks.mp4
35.6 MB
011.Limitations of Tabular Methods/026. Loss functions in value based RL.mp4
35.4 MB
001.Welcome/001. Why should you care.mp4
34.0 MB
007.Generalized Policy Iteration/017. Policy evaluation & improvement.mp4
33.5 MB
014.Policy-based RL vs Value-based RL/036. Policy gradient formalism.mp4
33.1 MB
015.REINFORCE/038. REINFORCE.mp4
32.9 MB
019.Planning with Monte Carlo Tree Search/054. Monte Carlo Tree Search.mp4
32.4 MB
008.Model-free learning/020. Monte-Carlo & Temporal Difference; Q-learning.mp4
31.6 MB
012.Case Study Deep Q-Network/029. DQN the internals.mp4
31.1 MB
008.Model-free learning/019. Model-based vs model-free.mp4
30.2 MB
008.Model-free learning/021. Exploration vs Exploitation.mp4
29.6 MB
004.All the cool stuff that isn't in the base track/011. Evolution strategies log-derivative trick.mp4
29.2 MB
012.Case Study Deep Q-Network/028. DQN bird's eye view.mp4
29.1 MB
010.Experience Replay/024. On-policy vs off-policy; Experience replay.mp4
28.0 MB
016.Actor-critic/042. Case study A3C.mp4
27.4 MB
017.Measuting exploration/045. Recap bandits.mp4
25.9 MB
016.Actor-critic/039. Advantage actor-critic.mp4
25.8 MB
007.Generalized Policy Iteration/018. Policy and value iteration.mp4
25.3 MB
016.Actor-critic/044. Combining supervised & reinforcement learning.mp4
25.2 MB
002.Reinforcement Learning/004. Decision process & applications.mp4
24.1 MB
003.Black box optimization/008. More on approximate crossentropy method.mp4
24.0 MB
018.Uncertainty-based exploration/048. Intuitive explanation.mp4
23.3 MB
018.Uncertainty-based exploration/051. UCB-1.mp4
23.3 MB
017.Measuting exploration/046. Regret measuring the quality of exploration.mp4
22.3 MB
004.All the cool stuff that isn't in the base track/012. Evolution strategies duct tape.mp4
22.2 MB
004.All the cool stuff that isn't in the base track/009. Evolution strategies core idea.mp4
21.9 MB
013.Honor/031. Double Q-learning.mp4
21.5 MB
003.Black box optimization/007. Approximate crossentropy method.mp4
20.2 MB
013.Honor/030. DQN statistical issues.mp4
20.2 MB
017.Measuting exploration/047. The message just repeats. 'Regret, Regret, Regret.'.mp4
19.3 MB
006.Bellman equations/016. Measuring Policy Optimality.mp4
19.0 MB
003.Black box optimization/005. Markov Decision Process.mp4
18.9 MB
002.Reinforcement Learning/003. Multi-armed bandit.mp4
18.7 MB
004.All the cool stuff that isn't in the base track/010. Evolution strategies math problems.mp4
18.6 MB
016.Actor-critic/040. Duct tape zone.mp4
18.4 MB
018.Uncertainty-based exploration/049. Thompson Sampling.mp4
17.9 MB
016.Actor-critic/041. Policy-based vs Value-based.mp4
17.6 MB
018.Uncertainty-based exploration/050. Optimism in face of uncertainty.mp4
17.3 MB
014.Policy-based RL vs Value-based RL/035. All Kinds of Policies.mp4
16.8 MB
004.All the cool stuff that isn't in the base track/013. Blackbox optimization drawbacks.mp4
16.0 MB
016.Actor-critic/043. A3C case study (2 2).mp4
15.7 MB
014.Policy-based RL vs Value-based RL/037. The log-derivative trick.mp4
13.9 MB
001.Welcome/002. Reinforcement learning vs all.mp4
11.3 MB
008.Model-free learning/022. Footnote Monte-Carlo vs Temporal Difference.mp4
10.8 MB
013.Honor/033. Partial observability.srt
28.4 kB
019.Planning with Monte Carlo Tree Search/053. Introduction to planning.srt
26.0 kB
011.Limitations of Tabular Methods/025. Supervised & Reinforcement Learning.srt
26.0 kB
005.Striving for reward/014. Reward design.srt
23.8 kB
011.Limitations of Tabular Methods/027. Difficulties with Approximate Methods.srt
22.4 kB
018.Uncertainty-based exploration/052. Bayesian UCB.srt
19.8 kB
006.Bellman equations/015. State and Action Value Functions.srt
18.7 kB
009.On-policy vs off-policy/023. Accounting for exploration. Expected Value SARSA..srt
17.7 kB
013.Honor/032. More DQN tricks.srt
16.7 kB
014.Policy-based RL vs Value-based RL/034. Intuition.srt
15.9 kB
003.Black box optimization/006. Crossentropy method.srt
15.9 kB
001.Welcome/001. Why should you care.srt
15.8 kB
011.Limitations of Tabular Methods/026. Loss functions in value based RL.srt
15.5 kB
019.Planning with Monte Carlo Tree Search/054. Monte Carlo Tree Search.srt
15.2 kB
008.Model-free learning/020. Monte-Carlo & Temporal Difference; Q-learning.srt
14.9 kB
007.Generalized Policy Iteration/017. Policy evaluation & improvement.srt
14.8 kB
008.Model-free learning/019. Model-based vs model-free.srt
14.4 kB
015.REINFORCE/038. REINFORCE.srt
14.3 kB
008.Model-free learning/021. Exploration vs Exploitation.srt
14.3 kB
014.Policy-based RL vs Value-based RL/036. Policy gradient formalism.srt
13.6 kB
004.All the cool stuff that isn't in the base track/011. Evolution strategies log-derivative trick.srt
12.9 kB
012.Case Study Deep Q-Network/029. DQN the internals.srt
12.5 kB
007.Generalized Policy Iteration/018. Policy and value iteration.srt
12.3 kB
017.Measuting exploration/045. Recap bandits.srt
12.2 kB
016.Actor-critic/044. Combining supervised & reinforcement learning.srt
12.2 kB
016.Actor-critic/039. Advantage actor-critic.srt
12.1 kB
012.Case Study Deep Q-Network/028. DQN bird's eye view.srt
11.7 kB
010.Experience Replay/024. On-policy vs off-policy; Experience replay.srt
11.5 kB
016.Actor-critic/042. Case study A3C.srt
11.4 kB
018.Uncertainty-based exploration/048. Intuitive explanation.srt
11.2 kB
003.Black box optimization/008. More on approximate crossentropy method.srt
10.7 kB
018.Uncertainty-based exploration/051. UCB-1.srt
10.6 kB
017.Measuting exploration/046. Regret measuring the quality of exploration.srt
10.4 kB
002.Reinforcement Learning/004. Decision process & applications.srt
9.9 kB
004.All the cool stuff that isn't in the base track/012. Evolution strategies duct tape.srt
9.9 kB
013.Honor/031. Double Q-learning.srt
9.7 kB
013.Honor/030. DQN statistical issues.srt
9.4 kB
017.Measuting exploration/047. The message just repeats. 'Regret, Regret, Regret.'.srt
8.9 kB
004.All the cool stuff that isn't in the base track/010. Evolution strategies math problems.srt
8.8 kB
006.Bellman equations/016. Measuring Policy Optimality.srt
8.7 kB
003.Black box optimization/005. Markov Decision Process.srt
8.5 kB
003.Black box optimization/007. Approximate crossentropy method.srt
8.4 kB
018.Uncertainty-based exploration/049. Thompson Sampling.srt
8.1 kB
018.Uncertainty-based exploration/050. Optimism in face of uncertainty.srt
8.1 kB
016.Actor-critic/040. Duct tape zone.srt
8.0 kB
014.Policy-based RL vs Value-based RL/035. All Kinds of Policies.srt
7.6 kB
004.All the cool stuff that isn't in the base track/009. Evolution strategies core idea.srt
7.5 kB
004.All the cool stuff that isn't in the base track/013. Blackbox optimization drawbacks.srt
7.5 kB
002.Reinforcement Learning/003. Multi-armed bandit.srt
7.4 kB
016.Actor-critic/041. Policy-based vs Value-based.srt
7.2 kB
016.Actor-critic/043. A3C case study (2 2).srt
6.1 kB
014.Policy-based RL vs Value-based RL/037. The log-derivative trick.srt
6.0 kB
001.Welcome/002. Reinforcement learning vs all.srt
5.0 kB
008.Model-free learning/022. Footnote Monte-Carlo vs Temporal Difference.srt
4.9 kB
[CourseClub.NET].url
123 Bytes
[DesireCourse.Com].url
51 Bytes
==查看完整文档列表==
上一个:
The.Innocents.2016.720p.BRRip.999MB.MkvCage.mkv
1.0 GB
猜你喜欢
[CourseClub.NET] Packtpub - Getting Started with Modern Python
420.1 MB
[CourseClub.NET] MasterClass - Frank Gehry Teaches...
1.2 GB
[CourseClub.Me] Skillshare - SEO Basics for Non-SEOs
317.3 MB
[CourseClub.NET]] Linkedin - Docker for Java Developers
269.7 MB
[CourseClub.NET] TreeHouse - Materials in Unity
640.6 MB
[CourseClub.NET] FrontendMasters - Introduction to...
619.9 MB
[CourseClub.Me] Code4Startup - Fundamental Python for...
90.1 MB
[CourseClub.NET] Pluralsight - Become a Full-stack .NET...
779.1 MB
[CourseClub.NET] Coursera - Neural Networks and Deep Learning
920.8 MB
[CourseClub.NET] Pluralsight - Building a Web App with...
2.6 GB