BT种子基本信息
- 种子哈希:d98eec8c613c171310adac293a5c1603f03ac517
- 文档大小:19.7 GB
- 文档个数:403个文档
- 下载次数:4851次
- 下载速度:极快
- 收录时间:2021-03-15
- 最近下载:2024-11-07
- DMCA/屏蔽:DMCA/屏蔽
文档列表
- 11. Time Series Data/7. Case Study DOW Theory.mp4 339.3 MB
- 7. Intrinsic Value/9. Jupyter Notebook Debt-to-Equity ratio.mp4 291.8 MB
- 10. Data Sources/4. Jupyter Notebook Pandas Datareader - Part I.mp4 261.5 MB
- 9. Visualization and Excel Export of Financial Data/5. Export to Excel - Part II.mp4 261.4 MB
- 12. Technical Indicators/10. Jupyter Notebook Exporting to Excel.mp4 257.6 MB
- 16. Finish Line/2. 3 Books to Read.mp4 243.0 MB
- 7. Intrinsic Value/16. Jupyter Notebook Revenue.mp4 241.9 MB
- 14. Correlation and Linear Regression/4. Jupyter Notebook Volatility Calculations.mp4 223.6 MB
- 10. Data Sources/9. Jupyter Notebook Web Scraping.mp4 221.9 MB
- 7. Intrinsic Value/7. Evaluate Leadership.mp4 215.5 MB
- 9. Visualization and Excel Export of Financial Data/2. Matplotlib - Part I.mp4 210.4 MB
- 11. Time Series Data/8. Jupyter Notebook Case Study DOW Theory.mp4 203.1 MB
- 5. Lemonade Stand/5. Jupyter Notebook The Lemonade Stand.mp4 202.8 MB
- 8. Matplotlib/10. Solutions.mp4 197.7 MB
- 12. Technical Indicators/4. Jupyter Notebook Simple Moving Average (MA).mp4 193.4 MB
- 5. Lemonade Stand/11. Jupyter Notebook Dividend.mp4 189.6 MB
- 9. Visualization and Excel Export of Financial Data/3. Matplotlib - Part II.mp4 188.5 MB
- 13. NumPy/4. Jupyter Notebook DataFrames and Series with NumPy.mp4 180.9 MB
- 12. Technical Indicators/9. Jupyter Notebook Stochastic Oscillator.mp4 178.6 MB
- 14. Correlation and Linear Regression/8. Jupyter Notebook Linear Regression.mp4 177.6 MB
- 6. Pandas/4. DataFrames - Part I.mp4 175.4 MB
- 10. Data Sources/11. Solutions.mp4 174.4 MB
- 6. Pandas/9. Read and Write with Pandas - Part I.mp4 173.8 MB
- 10. Data Sources/7. Jupyter Notebook Yahoo! Finance - Financial Statements.mp4 172.9 MB
- 4. Python Crash Course/14. Solutions.mp4 172.7 MB
- 7. Intrinsic Value/12. Stable and predictable.mp4 168.5 MB
- 7. Intrinsic Value/20. Jupyter Notebook Book Value.mp4 168.3 MB
- 6. Pandas/3. Series.mp4 167.4 MB
- 5. Lemonade Stand/8. Jupyter Notebook Shares.mp4 165.9 MB
- 4. Python Crash Course/2. Variables and types.mp4 165.5 MB
- 15. Working with Portfolios and Monte Carlo Simulations/8. Jupyter Notebook Portfolios and Monte Carlo Simulations.mp4 165.5 MB
- 9. Visualization and Excel Export of Financial Data/4. Export to Excel - Part I.mp4 164.4 MB
- 6. Pandas/10. Read and Write with Pandas - Part II.mp4 164.2 MB
- 13. NumPy/7. Jupyter Notebook Dot product and Transpose.mp4 164.1 MB
- 6. Pandas/2. Introduction to Pandas - a small demonstration.mp4 164.1 MB
- 6. Pandas/11. Read and Write with Pandas - Part III.mp4 163.6 MB
- 12. Technical Indicators/7. Jupyter Notebook MACD.mp4 163.3 MB
- 15. Working with Portfolios and Monte Carlo Simulations/11. Solutions.mp4 162.6 MB
- 13. NumPy/2. Jupyter Notebook Introduction to NumPy.mp4 162.5 MB
- 15. Working with Portfolios and Monte Carlo Simulations/7. Jupyter Notebook Monte Carlo Simulations - Introduction.mp4 162.4 MB
- 7. Intrinsic Value/11. Jupyter Notebook - Current ratio.mp4 155.5 MB
- 12. Technical Indicators/2. What is a Technical Indicator and Types of Indicators.mp4 154.7 MB
- 8. Matplotlib/7. Jupyter Notebook Pandas and data structures.mp4 153.2 MB
- 13. NumPy/9. Solutions.mp4 151.6 MB
- 12. Technical Indicators/11. Jupyter Notebook Using our Excel Sheet.mp4 150.3 MB
- 7. Intrinsic Value/24. Jupyter Notebook Combine All Data.mp4 148.0 MB
- 7. Intrinsic Value/2. Outcome of section.mp4 147.9 MB
- 6. Pandas/19. Solutions.mp4 146.6 MB
- 13. NumPy/5. Jupyter Notebook Vectorization with NumPy.mp4 146.6 MB
- 7. Intrinsic Value/25. Calculate a Fair Price (Intrinsic Value).mp4 146.3 MB
- 12. Technical Indicators/13. Solutions.mp4 145.2 MB
- 6. Pandas/1. Introduction.mp4 144.3 MB
- 11. Time Series Data/3. Jupyter Notebook Rate of Return, Percentage Change, and Normalization.mp4 142.6 MB
- 7. Intrinsic Value/14. Jupyter Notebook Return of Investment.mp4 142.6 MB
- 15. Working with Portfolios and Monte Carlo Simulations/3. Jupyter Notebook Portfolio.mp4 142.5 MB
- 7. Intrinsic Value/28. Jupyter Notebook Calculate a Fair Price (Intrinsic Value).mp4 136.1 MB
- 7. Intrinsic Value/29. Compare it with Current Price.mp4 134.1 MB
- 13. NumPy/6. Jupyter Notebook Matplotlib and NumPy.mp4 132.9 MB
- 15. Working with Portfolios and Monte Carlo Simulations/5. Jupyter Notebook Sharpe Ratio Calculations.mp4 132.7 MB
- 9. Visualization and Excel Export of Financial Data/6. Export to Excel - Part III.mp4 132.4 MB
- 13. NumPy/3. Jupyter Notebook Index, Slicing, and Views.mp4 130.5 MB
- 11. Time Series Data/2. Rate of Return, Percentage Change, and Normalization.mp4 127.9 MB
- 10. Data Sources/5. Jupyter Notebook Pandas Datareader - Part II.mp4 127.6 MB
- 5. Lemonade Stand/7. Shares a story - Understand what they really are.mp4 127.1 MB
- 13. NumPy/1. Introduction.mp4 127.0 MB
- 8. Matplotlib/3. Jupyter Notebook Matplotlib basics.mp4 126.6 MB
- 7. Intrinsic Value/18. Jupyter Notebook Earnings Per Share (EPS).mp4 125.9 MB
- 6. Pandas/6. DataFrames - Part III.mp4 123.6 MB
- 5. Lemonade Stand/3. Introduction to the Lemonade Stand.mp4 123.6 MB
- 8. Matplotlib/4. Jupyter Notebook Work with Axis.mp4 121.0 MB
- 8. Matplotlib/8. Jupyter Notebook Bar plots.mp4 119.5 MB
- 6. Pandas/12. Merge - Join - Concatenate - Part I.mp4 118.1 MB
- 6. Pandas/16. Useful methods to know.mp4 116.8 MB
- 6. Pandas/14. Transpose and clean data.mp4 116.2 MB
- 4. Python Crash Course/12. Lambda functions.mp4 114.9 MB
- 14. Correlation and Linear Regression/10. Jupyter Notebook Beta Calculations.mp4 114.7 MB
- 6. Pandas/5. DataFrames - Part II.mp4 112.7 MB
- 14. Correlation and Linear Regression/14. Solutions.mp4 112.3 MB
- 14. Correlation and Linear Regression/3. Volatility of a Stock.mp4 111.8 MB
- 7. Intrinsic Value/13. Return of Investment (ROI) - Evaluation.mp4 111.0 MB
- 14. Correlation and Linear Regression/12. Jupyter Notebook CAPM Calculations.mp4 110.3 MB
- 11. Time Series Data/6. Jupyter Notebook Multiple Time Frames.mp4 110.2 MB
- 8. Matplotlib/5. Jupyter Notebook Title and Labels.mp4 109.9 MB
- 8. Matplotlib/2. Overview of section.mp4 109.7 MB
- 6. Pandas/8. DataFrames - Part V.mp4 109.5 MB
- 11. Time Series Data/5. Jupyter Notebook CAGR.mp4 108.4 MB
- 12. Technical Indicators/3. Indicator Moving Average.mp4 108.3 MB
- 5. Lemonade Stand/6. Shares.mp4 106.1 MB
- 7. Intrinsic Value/30. What did we learn.mp4 104.7 MB
- 5. Lemonade Stand/4. The Lemonade Stand - the easy to understand example.mp4 104.5 MB
- 6. Pandas/7. DataFrames - Part IV.mp4 103.5 MB
- 8. Matplotlib/6. Jupyter Notebook Matplotlib and Pandas.mp4 101.7 MB
- 7. Intrinsic Value/15. Revenue - Evaluation.mp4 99.3 MB
- 14. Correlation and Linear Regression/6. Jupyter Notebook Correlation Calculations.mp4 98.5 MB
- 7. Intrinsic Value/8. Debt-to-Equity ration - Evaluation.mp4 98.2 MB
- 7. Intrinsic Value/3. Understand Risk - Part I.mp4 98.2 MB
- 12. Technical Indicators/5. Jupyter Notebook Exponential Moving Average (EMA).mp4 97.4 MB
- 12. Technical Indicators/6. Indicator MACD.mp4 94.2 MB
- 5. Lemonade Stand/9. Dividend.mp4 93.8 MB
- 14. Correlation and Linear Regression/11. CAPM.mp4 92.3 MB
- 13. NumPy/8. Exercises.mp4 90.1 MB
- 7. Intrinsic Value/19. Book Value - Evaluation.mp4 88.3 MB
- 4. Python Crash Course/4. Boolean expressions.mp4 86.6 MB
- 3. Jupyter Notebook guide/7. Jupyter Notebook Tab + Tab + Shift & Tab.mp4 86.2 MB
- 12. Technical Indicators/12. Exercises.mp4 83.5 MB
- 12. Technical Indicators/8. Indicator Stochastic Oscillator.mp4 82.6 MB
- 15. Working with Portfolios and Monte Carlo Simulations/6. Monte Carlo Simulations.mp4 81.9 MB
- 6. Pandas/17. Apply - an awesome method to master.mp4 81.7 MB
- 5. Lemonade Stand/2. Intrinsic Value.mp4 81.3 MB
- 5. Lemonade Stand/10. Dividend a story - an easy way to understand them.mp4 80.7 MB
- 6. Pandas/15. Views.mp4 80.3 MB
- 8. Matplotlib/9. Exercises.mp4 79.8 MB
- 1. Introduction/2. Get the most out of this course.mp4 78.8 MB
- 7. Intrinsic Value/10. Current ratio - Evaluation.mp4 78.2 MB
- 6. Pandas/18. Exercises.mp4 77.9 MB
- 2. Setup/3. Resources and setup environment in Jupyter notebook.mp4 77.9 MB
- 4. Python Crash Course/5. If statements.mp4 77.7 MB
- 7. Intrinsic Value/27. Jupyter Notebook Price-to-Earnings (PE) ratio.mp4 76.9 MB
- 4. Python Crash Course/13. Exercises.mp4 76.2 MB
- 14. Correlation and Linear Regression/7. Linear Regression.mp4 75.9 MB
- 4. Python Crash Course/15. New to Python We have all been there.mp4 75.7 MB
- 4. Python Crash Course/6. Python lists.mp4 75.2 MB
- 11. Time Series Data/1. Introduction.mp4 74.5 MB
- 7. Intrinsic Value/23. Combine All Data.mp4 72.6 MB
- 6. Pandas/13. Merge - Join - Concatenate - Part II.mp4 71.8 MB
- 7. Intrinsic Value/22. Jupyter Notebook Free Cash Flow (FCF).mp4 69.4 MB
- 10. Data Sources/2. What will we learn.mp4 69.1 MB
- 7. Intrinsic Value/4. Understand Risk - Part II.mp4 67.3 MB
- 15. Working with Portfolios and Monte Carlo Simulations/9. Jupyter Notebook The Efficient Frontier.mp4 67.1 MB
- 4. Python Crash Course/7. For-loops.mp4 65.4 MB
- 7. Intrinsic Value/5. Understand Rik - Part III.mp4 64.8 MB
- 4. Python Crash Course/11. Functions.mp4 62.6 MB
- 10. Data Sources/8. Web Scraping.mp4 61.5 MB
- 15. Working with Portfolios and Monte Carlo Simulations/10. Exercises.mp4 61.4 MB
- 10. Data Sources/10. Exercises.mp4 59.8 MB
- 7. Intrinsic Value/6. Understand Risk - All put together.mp4 59.8 MB
- 3. Jupyter Notebook guide/3. Jupyter Notebook The Dashboard.mp4 58.8 MB
- 5. Lemonade Stand/12. What did we learn.mp4 58.4 MB
- 14. Correlation and Linear Regression/13. Exercises.mp4 58.1 MB
- 7. Intrinsic Value/26. Price-to-Earnings (PE) ratio.mp4 57.8 MB
- 15. Working with Portfolios and Monte Carlo Simulations/4. Sharpe Ratio.mp4 56.8 MB
- 4. Python Crash Course/9. Python Dictionaries (dict).mp4 56.6 MB
- 4. Python Crash Course/10. Other types.mp4 56.5 MB
- 12. Technical Indicators/1. Introduction.mp4 56.4 MB
- 10. Data Sources/6. The Yahoo! Finance API - read Financial Statements.mp4 56.2 MB
- 3. Jupyter Notebook guide/4. Jupyter Notebook Run and restart a Notebook.mp4 56.1 MB
- 13. NumPy/10. What did we learn.mp4 51.6 MB
- 14. Correlation and Linear Regression/2. Adjusted Close.mp4 50.3 MB
- 6. Pandas/20. What did we learn.mp4 49.4 MB
- 14. Correlation and Linear Regression/5. Correlation Between Securities.mp4 47.4 MB
- 16. Finish Line/3. Goodbye.mp4 47.1 MB
- 9. Visualization and Excel Export of Financial Data/7. What did we learn.mp4 46.2 MB
- 1. Introduction/1. One Question.mp4 45.3 MB
- 7. Intrinsic Value/17. Earnings Per Share (EPS) - Evaluation.mp4 45.3 MB
- 14. Correlation and Linear Regression/9. Beta.mp4 44.7 MB
- 11. Time Series Data/4. CAGR.mp4 43.5 MB
- 14. Correlation and Linear Regression/15. What did we learn.mp4 41.5 MB
- 4. Python Crash Course/3. The print statement.mp4 41.3 MB
- 7. Intrinsic Value/21. Free Cash Flow (FCF) - Evaluation.mp4 40.8 MB
- 4. Python Crash Course/8. While loops.mp4 37.4 MB
- 9. Visualization and Excel Export of Financial Data/1. Introduction.mp4 34.8 MB
- 3. Jupyter Notebook guide/6. Jupyter Notebook Comment and markdown.mp4 34.7 MB
- 10. Data Sources/3. Pandas Datareader - Remote Data Access for Pandas.mp4 34.5 MB
- 15. Working with Portfolios and Monte Carlo Simulations/12. What did we learn.mp4 34.0 MB
- 8. Matplotlib/11. What did we learn.mp4 33.0 MB
- 14. Correlation and Linear Regression/1. Introduction.mp4 32.3 MB
- 15. Working with Portfolios and Monte Carlo Simulations/1. Introduction.mp4 32.2 MB
- 11. Time Series Data/9. What did we learn.mp4 30.7 MB
- 5. Lemonade Stand/1. Introduction.mp4 30.3 MB
- 15. Working with Portfolios and Monte Carlo Simulations/2. Portfolios.mp4 30.0 MB
- 3. Jupyter Notebook guide/5. Jupyter Notebook Copy and reorganize code.mp4 28.8 MB
- 4. Python Crash Course/16. What did we learn.mp4 28.3 MB
- 7. Intrinsic Value/1. Introduction.mp4 28.0 MB
- 10. Data Sources/12. What did we learn.mp4 26.3 MB
- 4. Python Crash Course/1. Introduction.mp4 26.0 MB
- 2. Setup/2. Download Anaconda (includes Python and Jupyter notebook).mp4 24.8 MB
- 8. Matplotlib/1. Introduction.mp4 22.0 MB
- 10. Data Sources/1. Introduction.mp4 21.1 MB
- 3. Jupyter Notebook guide/1. Introduction.mp4 21.1 MB
- 16. Finish Line/1. Introduction.mp4 20.9 MB
- 3. Jupyter Notebook guide/8. What did we learn.mp4 20.7 MB
- 2. Setup/3.1 PyFinance.zip 19.9 MB
- 12. Technical Indicators/14. What did we learn.mp4 19.1 MB
- 2. Setup/4. Prompt rating.mp4 12.8 MB
- 2. Setup/1. Introduction.mp4 11.4 MB
- 3. Jupyter Notebook guide/2.2 Jupyter Cheat Sheet - PC.pdf 569.1 kB
- 3. Jupyter Notebook guide/2.1 Jupyter Cheat Sheet - MAC.pdf 568.8 kB
- 6. Pandas/1.1 Pandas_Cheat_Sheet.pdf 345.9 kB
- 6. Pandas/12.1 Pandas_Cheat_Sheet.pdf 345.9 kB
- 4. Python Crash Course/16.1 04 - Python Cheat Sheet.pdf 138.9 kB
- 7. Intrinsic Value/9. Jupyter Notebook Debt-to-Equity ratio.srt 29.0 kB
- 14. Correlation and Linear Regression/4. Jupyter Notebook Volatility Calculations.srt 28.4 kB
- 12. Technical Indicators/10. Jupyter Notebook Exporting to Excel.srt 28.0 kB
- 10. Data Sources/4. Jupyter Notebook Pandas Datareader - Part I.srt 27.1 kB
- 9. Visualization and Excel Export of Financial Data/5. Export to Excel - Part II.srt 27.0 kB
- 11. Time Series Data/7. Case Study DOW Theory.srt 25.5 kB
- 7. Intrinsic Value/16. Jupyter Notebook Revenue.srt 24.7 kB
- 10. Data Sources/9. Jupyter Notebook Web Scraping.srt 23.9 kB
- 5. Lemonade Stand/5. Jupyter Notebook The Lemonade Stand.srt 23.9 kB
- 11. Time Series Data/8. Jupyter Notebook Case Study DOW Theory.srt 22.5 kB
- 9. Visualization and Excel Export of Financial Data/2. Matplotlib - Part I.srt 22.0 kB
- 9. Visualization and Excel Export of Financial Data/3. Matplotlib - Part II.srt 21.8 kB
- 15. Working with Portfolios and Monte Carlo Simulations/7. Jupyter Notebook Monte Carlo Simulations - Introduction.srt 21.7 kB
- 13. NumPy/2. Jupyter Notebook Introduction to NumPy.srt 21.6 kB
- 12. Technical Indicators/4. Jupyter Notebook Simple Moving Average (MA).srt 20.8 kB
- 13. NumPy/4. Jupyter Notebook DataFrames and Series with NumPy.srt 20.7 kB
- 8. Matplotlib/10. Solutions.srt 20.4 kB
- 14. Correlation and Linear Regression/8. Jupyter Notebook Linear Regression.srt 20.2 kB
- 15. Working with Portfolios and Monte Carlo Simulations/8. Jupyter Notebook Portfolios and Monte Carlo Simulations.srt 19.8 kB
- 4. Python Crash Course/14. Solutions.srt 19.4 kB
- 5. Lemonade Stand/11. Jupyter Notebook Dividend.srt 19.4 kB
- 10. Data Sources/7. Jupyter Notebook Yahoo! Finance - Financial Statements.srt 19.4 kB
- 5. Lemonade Stand/8. Jupyter Notebook Shares.srt 19.3 kB
- 15. Working with Portfolios and Monte Carlo Simulations/11. Solutions.srt 19.1 kB
- 16. Finish Line/2. 3 Books to Read.srt 18.9 kB
- 12. Technical Indicators/9. Jupyter Notebook Stochastic Oscillator.srt 18.6 kB
- 6. Pandas/4. DataFrames - Part I.srt 18.1 kB
- 7. Intrinsic Value/20. Jupyter Notebook Book Value.srt 18.0 kB
- 12. Technical Indicators/7. Jupyter Notebook MACD.srt 17.9 kB
- 6. Pandas/3. Series.srt 17.9 kB
- 9. Visualization and Excel Export of Financial Data/4. Export to Excel - Part I.srt 17.4 kB
- 10. Data Sources/11. Solutions.srt 17.1 kB
- 6. Pandas/2. Introduction to Pandas - a small demonstration.srt 16.9 kB
- 6. Pandas/10. Read and Write with Pandas - Part II.srt 16.6 kB
- 15. Working with Portfolios and Monte Carlo Simulations/5. Jupyter Notebook Sharpe Ratio Calculations.srt 16.2 kB
- 4. Python Crash Course/2. Variables and types.srt 16.2 kB
- 13. NumPy/7. Jupyter Notebook Dot product and Transpose.srt 16.1 kB
- 7. Intrinsic Value/24. Jupyter Notebook Combine All Data.srt 16.1 kB
- 15. Working with Portfolios and Monte Carlo Simulations/3. Jupyter Notebook Portfolio.srt 15.8 kB
- 12. Technical Indicators/11. Jupyter Notebook Using our Excel Sheet.srt 15.8 kB
- 7. Intrinsic Value/14. Jupyter Notebook Return of Investment.srt 15.5 kB
- 13. NumPy/3. Jupyter Notebook Index, Slicing, and Views.srt 15.4 kB
- 10. Data Sources/5. Jupyter Notebook Pandas Datareader - Part II.srt 15.3 kB
- 7. Intrinsic Value/11. Jupyter Notebook - Current ratio.srt 15.3 kB
- 6. Pandas/9. Read and Write with Pandas - Part I.srt 15.2 kB
- 11. Time Series Data/3. Jupyter Notebook Rate of Return, Percentage Change, and Normalization.srt 15.1 kB
- 13. NumPy/9. Solutions.srt 15.0 kB
- 13. NumPy/5. Jupyter Notebook Vectorization with NumPy.srt 14.9 kB
- 6. Pandas/19. Solutions.srt 14.5 kB
- 7. Intrinsic Value/18. Jupyter Notebook Earnings Per Share (EPS).srt 14.3 kB
- 6. Pandas/11. Read and Write with Pandas - Part III.srt 14.3 kB
- 9. Visualization and Excel Export of Financial Data/6. Export to Excel - Part III.srt 13.9 kB
- 14. Correlation and Linear Regression/10. Jupyter Notebook Beta Calculations.srt 13.9 kB
- 8. Matplotlib/8. Jupyter Notebook Bar plots.srt 13.9 kB
- 13. NumPy/6. Jupyter Notebook Matplotlib and NumPy.srt 13.9 kB
- 8. Matplotlib/7. Jupyter Notebook Pandas and data structures.srt 13.8 kB
- 8. Matplotlib/3. Jupyter Notebook Matplotlib basics.srt 13.6 kB
- 7. Intrinsic Value/7. Evaluate Leadership.srt 13.6 kB
- 7. Intrinsic Value/29. Compare it with Current Price.srt 13.5 kB
- 12. Technical Indicators/13. Solutions.srt 13.4 kB
- 7. Intrinsic Value/28. Jupyter Notebook Calculate a Fair Price (Intrinsic Value).srt 13.2 kB
- 8. Matplotlib/5. Jupyter Notebook Title and Labels.srt 12.7 kB
- 8. Matplotlib/4. Jupyter Notebook Work with Axis.srt 12.7 kB
- 14. Correlation and Linear Regression/12. Jupyter Notebook CAPM Calculations.srt 12.6 kB
- 11. Time Series Data/5. Jupyter Notebook CAGR.srt 12.2 kB
- 7. Intrinsic Value/12. Stable and predictable.srt 12.1 kB
- 14. Correlation and Linear Regression/6. Jupyter Notebook Correlation Calculations.srt 11.9 kB
- 6. Pandas/16. Useful methods to know.srt 11.9 kB
- 6. Pandas/12. Merge - Join - Concatenate - Part I.srt 11.7 kB
- 11. Time Series Data/6. Jupyter Notebook Multiple Time Frames.srt 11.6 kB
- 6. Pandas/8. DataFrames - Part V.srt 11.4 kB
- 6. Pandas/7. DataFrames - Part IV.srt 11.3 kB
- 14. Correlation and Linear Regression/14. Solutions.srt 11.2 kB
- 4. Python Crash Course/12. Lambda functions.srt 11.1 kB
- 6. Pandas/5. DataFrames - Part II.srt 10.9 kB
- 6. Pandas/6. DataFrames - Part III.srt 10.8 kB
- 12. Technical Indicators/5. Jupyter Notebook Exponential Moving Average (EMA).srt 10.5 kB
- 6. Pandas/14. Transpose and clean data.srt 10.4 kB
- 8. Matplotlib/6. Jupyter Notebook Matplotlib and Pandas.srt 10.3 kB
- 7. Intrinsic Value/25. Calculate a Fair Price (Intrinsic Value).srt 10.0 kB
- 6. Pandas/1. Introduction.srt 9.9 kB
- 12. Technical Indicators/2. What is a Technical Indicator and Types of Indicators.srt 9.9 kB
- 5. Lemonade Stand/7. Shares a story - Understand what they really are.srt 9.8 kB
- 13. NumPy/8. Exercises.srt 9.8 kB
- 7. Intrinsic Value/2. Outcome of section.srt 9.6 kB
- 3. Jupyter Notebook guide/7. Jupyter Notebook Tab + Tab + Shift & Tab.srt 9.6 kB
- 12. Technical Indicators/12. Exercises.srt 9.2 kB
- 5. Lemonade Stand/10. Dividend a story - an easy way to understand them.srt 8.6 kB
- 11. Time Series Data/2. Rate of Return, Percentage Change, and Normalization.srt 8.5 kB
- 5. Lemonade Stand/3. Introduction to the Lemonade Stand.srt 8.4 kB
- 13. NumPy/1. Introduction.srt 8.1 kB
- 5. Lemonade Stand/4. The Lemonade Stand - the easy to understand example.srt 8.1 kB
- 7. Intrinsic Value/13. Return of Investment (ROI) - Evaluation.srt 8.1 kB
- 4. Python Crash Course/4. Boolean expressions.srt 8.0 kB
- 6. Pandas/17. Apply - an awesome method to master.srt 7.9 kB
- 6. Pandas/18. Exercises.srt 7.8 kB
- 4. Python Crash Course/13. Exercises.srt 7.7 kB
- 8. Matplotlib/9. Exercises.srt 7.6 kB
- 6. Pandas/15. Views.srt 7.6 kB
- 14. Correlation and Linear Regression/3. Volatility of a Stock.srt 7.5 kB
- 7. Intrinsic Value/27. Jupyter Notebook Price-to-Earnings (PE) ratio.srt 7.4 kB
- 4. Python Crash Course/6. Python lists.srt 7.3 kB
- 15. Working with Portfolios and Monte Carlo Simulations/10. Exercises.srt 7.3 kB
- 7. Intrinsic Value/15. Revenue - Evaluation.srt 7.3 kB
- 12. Technical Indicators/3. Indicator Moving Average.srt 7.2 kB
- 15. Working with Portfolios and Monte Carlo Simulations/9. Jupyter Notebook The Efficient Frontier.srt 7.0 kB
- 7. Intrinsic Value/30. What did we learn.srt 7.0 kB
- 7. Intrinsic Value/22. Jupyter Notebook Free Cash Flow (FCF).srt 7.0 kB
- 8. Matplotlib/2. Overview of section.srt 6.7 kB
- 5. Lemonade Stand/6. Shares.srt 6.7 kB
- 4. Python Crash Course/7. For-loops.srt 6.6 kB
- 6. Pandas/13. Merge - Join - Concatenate - Part II.srt 6.5 kB
- 4. Python Crash Course/5. If statements.srt 6.3 kB
- 14. Correlation and Linear Regression/13. Exercises.srt 6.3 kB
- 14. Correlation and Linear Regression/11. CAPM.srt 6.2 kB
- 12. Technical Indicators/6. Indicator MACD.srt 6.1 kB
- 7. Intrinsic Value/3. Understand Risk - Part I.srt 6.1 kB
- 7. Intrinsic Value/8. Debt-to-Equity ration - Evaluation.srt 5.9 kB
- 2. Setup/3. Resources and setup environment in Jupyter notebook.srt 5.9 kB
- 1. Introduction/2. Get the most out of this course.srt 5.7 kB
- 4. Python Crash Course/9. Python Dictionaries (dict).srt 5.6 kB
- 10. Data Sources/10. Exercises.srt 5.5 kB
- 7. Intrinsic Value/19. Book Value - Evaluation.srt 5.5 kB
- 12. Technical Indicators/8. Indicator Stochastic Oscillator.srt 5.5 kB
- 4. Python Crash Course/11. Functions.srt 5.5 kB
- 11. Time Series Data/1. Introduction.srt 5.5 kB
- 5. Lemonade Stand/9. Dividend.srt 5.2 kB
- 4. Python Crash Course/10. Other types.srt 5.2 kB
- 15. Working with Portfolios and Monte Carlo Simulations/6. Monte Carlo Simulations.srt 5.2 kB
- 5. Lemonade Stand/2. Intrinsic Value.srt 5.2 kB
- 7. Intrinsic Value/23. Combine All Data.srt 5.0 kB
- 14. Correlation and Linear Regression/7. Linear Regression.srt 4.9 kB
- 3. Jupyter Notebook guide/3. Jupyter Notebook The Dashboard.srt 4.9 kB
- 4. Python Crash Course/15. New to Python We have all been there.srt 4.8 kB
- 3. Jupyter Notebook guide/4. Jupyter Notebook Run and restart a Notebook.srt 4.7 kB
- 7. Intrinsic Value/10. Current ratio - Evaluation.srt 4.5 kB
- 10. Data Sources/2. What will we learn.srt 4.3 kB
- 7. Intrinsic Value/5. Understand Rik - Part III.srt 4.3 kB
- 7. Intrinsic Value/4. Understand Risk - Part II.srt 4.1 kB
- 10. Data Sources/8. Web Scraping.srt 4.0 kB
- 10. Data Sources/6. The Yahoo! Finance API - read Financial Statements.srt 4.0 kB
- 7. Intrinsic Value/6. Understand Risk - All put together.srt 3.9 kB
- 4. Python Crash Course/3. The print statement.srt 3.9 kB
- 15. Working with Portfolios and Monte Carlo Simulations/4. Sharpe Ratio.srt 3.7 kB
- 12. Technical Indicators/1. Introduction.srt 3.6 kB
- 14. Correlation and Linear Regression/2. Adjusted Close.srt 3.6 kB
- 4. Python Crash Course/8. While loops.srt 3.6 kB
- 7. Intrinsic Value/26. Price-to-Earnings (PE) ratio.srt 3.4 kB
- 3. Jupyter Notebook guide/6. Jupyter Notebook Comment and markdown.srt 3.3 kB
- 1. Introduction/1. One Question.srt 3.2 kB
- 13. NumPy/10. What did we learn.srt 3.2 kB
- 7. Intrinsic Value/17. Earnings Per Share (EPS) - Evaluation.srt 3.1 kB
- 9. Visualization and Excel Export of Financial Data/7. What did we learn.srt 3.1 kB
- 5. Lemonade Stand/12. What did we learn.srt 3.0 kB
- 6. Pandas/20. What did we learn.srt 3.0 kB
- 16. Finish Line/3. Goodbye.srt 3.0 kB
- 14. Correlation and Linear Regression/9. Beta.srt 2.9 kB
- 3. Jupyter Notebook guide/5. Jupyter Notebook Copy and reorganize code.srt 2.9 kB
- 11. Time Series Data/4. CAGR.srt 2.9 kB
- 14. Correlation and Linear Regression/5. Correlation Between Securities.srt 2.9 kB
- 14. Correlation and Linear Regression/15. What did we learn.srt 2.6 kB
- 7. Intrinsic Value/21. Free Cash Flow (FCF) - Evaluation.srt 2.5 kB
- 14. Correlation and Linear Regression/1. Introduction.srt 2.5 kB
- 15. Working with Portfolios and Monte Carlo Simulations/12. What did we learn.srt 2.3 kB
- 11. Time Series Data/9. What did we learn.srt 2.3 kB
- 10. Data Sources/3. Pandas Datareader - Remote Data Access for Pandas.srt 2.3 kB
- 2. Setup/2. Download Anaconda (includes Python and Jupyter notebook).srt 2.1 kB
- 8. Matplotlib/11. What did we learn.srt 2.1 kB
- 9. Visualization and Excel Export of Financial Data/1. Introduction.srt 2.1 kB
- 15. Working with Portfolios and Monte Carlo Simulations/2. Portfolios.srt 2.1 kB
- 15. Working with Portfolios and Monte Carlo Simulations/1. Introduction.srt 2.0 kB
- 4. Python Crash Course/16. What did we learn.srt 1.8 kB
- 10. Data Sources/12. What did we learn.srt 1.7 kB
- 4. Python Crash Course/1. Introduction.srt 1.7 kB
- 5. Lemonade Stand/1. Introduction.srt 1.6 kB
- 7. Intrinsic Value/1. Introduction.srt 1.5 kB
- 16. Finish Line/1. Introduction.srt 1.3 kB
- 3. Jupyter Notebook guide/1. Introduction.srt 1.3 kB
- 10. Data Sources/1. Introduction.srt 1.3 kB
- 3. Jupyter Notebook guide/8. What did we learn.srt 1.2 kB
- 12. Technical Indicators/14. What did we learn.srt 1.2 kB
- 8. Matplotlib/1. Introduction.srt 1.0 kB
- 2. Setup/4. Prompt rating.srt 986 Bytes
- 2. Setup/1. Introduction.srt 594 Bytes
- 12. Technical Indicators/How you can help GetFreeCourses.Co.txt 182 Bytes
- 4. Python Crash Course/How you can help GetFreeCourses.Co.txt 182 Bytes
- 8. Matplotlib/How you can help GetFreeCourses.Co.txt 182 Bytes
- How you can help GetFreeCourses.Co.txt 182 Bytes
- 2. Setup/3.2 Link to PyFinance.zip on Google Drive.html 143 Bytes
- 6. Pandas/11.1 httpsen.wikipedia.orgwikiList_of_countries_by_past_and_projected_GDP_(PPP).html 140 Bytes
- 8. Matplotlib/5.1 Matplotlib Overview.html 129 Bytes
- 7. Intrinsic Value/26.1 Investopedia - Price-to-Earnings (PE) ratio.html 121 Bytes
- 7. Intrinsic Value/13.1 Investopedia - Return of Investment (ROI).html 120 Bytes
- 7. Intrinsic Value/8.1 Investopedia - Debt-to-equity ratio.html 117 Bytes
- 12. Technical Indicators/Download Paid Udemy Courses For Free.url 116 Bytes
- 12. Technical Indicators/GetFreeCourses.Co.url 116 Bytes
- 4. Python Crash Course/Download Paid Udemy Courses For Free.url 116 Bytes
- 4. Python Crash Course/GetFreeCourses.Co.url 116 Bytes
- 8. Matplotlib/Download Paid Udemy Courses For Free.url 116 Bytes
- 8. Matplotlib/GetFreeCourses.Co.url 116 Bytes
- Download Paid Udemy Courses For Free.url 116 Bytes
- GetFreeCourses.Co.url 116 Bytes
- 7. Intrinsic Value/10.1 Investopedia - Current Ratio.html 114 Bytes
- 7. Intrinsic Value/21.1 Investopeida - Free Cash Flow (FCF).html 114 Bytes
- 7. Intrinsic Value/19.1 Investopedia - Book Value.html 111 Bytes
- 7. Intrinsic Value/15.1 Investopedia - Revenue.html 109 Bytes
- 7. Intrinsic Value/16.1 Investopedia - CAGR.html 106 Bytes
- 7. Intrinsic Value/16.2 Investopedia - AAGR.html 106 Bytes
- 9. Visualization and Excel Export of Financial Data/4.1 XLSX Writer - Format.html 106 Bytes
- 2. Setup/2.2 Download link to Anaconda.html 105 Bytes
- 7. Intrinsic Value/17.1 Investopedia - Earnings Per Share (EPS).html 105 Bytes
- 2. Setup/2.1 Installation guides.html 104 Bytes
- 3. Jupyter Notebook guide/2. Jupyter Notebook Cheat Sheet..html 77 Bytes
==查看完整文档列表==