磁力狗
导航切换
首页
最新地址
最新地址
最新地址
最新地址
搜索磁力
BT种子名称
Lynda - Machine Learning and AI Foundations - Clustering and Association
请保存以下最新地址
clgou.icu
clgougou.cyou
clg.dog
磁力.dog
BT种子基本信息
种子哈希:
d308c7575a0f8d455153651ff6385f3a384db8e0
文档大小:
557.9 MB
文档个数:
85
个文档
下载次数:
643
次
下载速度:
极快
收录时间:
2020-01-25
最近下载:
2024-11-04
DMCA/屏蔽:
DMCA/屏蔽
下载磁力链接
magnet:?xt=urn:btih:D308C7575A0F8D455153651FF6385F3A384DB8E0
复制磁力链接到
PikPak
、utorrent、Bitcomet、迅雷、115、百度网盘等下载工具进行下载。
下载BT种子
磁力链接
种子下载
迅雷下载
二维码
YouTube成人版
91视频
91短视频
51品茶
逼哩逼哩
暗网禁区
欲漫涩
草榴社区
含羞草
抖阴破解版
TikTok成人版
成人快手
乱伦社区
91AV
暗网禁地
文档列表
Exercise Files/Ex_Files_Machine_Learning_AI_Clustering.zip
26.2 MB
6.5. Anomaly Detection/34.Using SOM for anomaly detection.mp4
22.8 MB
6.5. Anomaly Detection/32.The k = 1 trick.mp4
21.7 MB
5.4. Cluster Methods for Categorical Variables/31.A self organizing map example.mp4
21.3 MB
4.3. Visualizing and Reporting Cluster Solutions/24.Line graphs.mp4
20.4 MB
2.1. What Is Cluster Analysis/05.Looking at the data with a 2D scatter plot.mp4
19.6 MB
7.6. Association Rules and Sequence Detection/36.Running association rules.mp4
19.5 MB
2.1. What Is Cluster Analysis/06.Understanding hierarchical cluster analysis.mp4
19.4 MB
7.6. Association Rules and Sequence Detection/38.Interpreting association rules.mp4
19.0 MB
5.4. Cluster Methods for Categorical Variables/25.Relating clusters to categories statistically.mp4
18.6 MB
5.4. Cluster Methods for Categorical Variables/27.Running a multiple correspondence analysis.mp4
17.8 MB
2.1. What Is Cluster Analysis/09.Methods for measuring distance.mp4
16.7 MB
7.6. Association Rules and Sequence Detection/39.Putting association rules to use.mp4
16.4 MB
6.5. Anomaly Detection/33.Anomaly detection algorithms.mp4
15.2 MB
7.6. Association Rules and Sequence Detection/41.Sequence detection.mp4
15.1 MB
3.2. K-Means/15.Interpreting cluster analysis output.mp4
15.1 MB
4.3. Visualizing and Reporting Cluster Solutions/22.Summarizing cluster means in a table.mp4
14.9 MB
5.4. Cluster Methods for Categorical Variables/29.Using cluster analysis and decision trees together.mp4
14.9 MB
3.2. K-Means/19.Finding optimum value for k - k = 4.mp4
14.9 MB
5.4. Cluster Methods for Categorical Variables/30.A BIRCH_two-step example.mp4
13.7 MB
3.2. K-Means/18.Finding optimum value for k - k = 3.mp4
13.2 MB
3.2. K-Means/20.Finding optimum value for k - k = 5.mp4
12.8 MB
2.1. What Is Cluster Analysis/10.What is k-nearest neighbors.mp4
12.7 MB
3.2. K-Means/17.Which cases should be used with k-means.mp4
11.7 MB
5.4. Cluster Methods for Categorical Variables/28.Interpreting a perceptual map.mp4
11.6 MB
2.1. What Is Cluster Analysis/07.Running hierarchical cluster analysis.mp4
11.2 MB
2.1. What Is Cluster Analysis/08.Interpreting a dendrogram.mp4
10.9 MB
3.2. K-Means/14.Running a k-means cluster analysis.mp4
10.9 MB
3.2. K-Means/21.What the best solution.mp4
10.4 MB
1.Introduction/04.What is unsupervised machine learning.mp4
9.8 MB
4.3. Visualizing and Reporting Cluster Solutions/23.Traffic Light feature in Excel.mp4
9.7 MB
3.2. K-Means/13.Interpreting a box plot.mp4
9.0 MB
3.2. K-Means/12.Which variables should be used with k-means.mp4
9.0 MB
7.6. Association Rules and Sequence Detection/35.Intro to association rules and sequence analysis.mp4
7.6 MB
5.4. Cluster Methods for Categorical Variables/26.Relating clusters to categories visually.mp4
6.9 MB
3.2. K-Means/11.How does k-means work.mp4
6.5 MB
1.Introduction/01.Welcome.mp4
6.3 MB
7.6. Association Rules and Sequence Detection/40.Comparing clustering and association rules.mp4
6.1 MB
7.6. Association Rules and Sequence Detection/37.Some association rules terminology.mp4
4.7 MB
1.Introduction/03.Using the exercise files.mp4
4.2 MB
1.Introduction/02.What you should know.mp4
3.4 MB
3.2. K-Means/16.What does silhouette mean.mp4
3.4 MB
8.Conclusion/42.Next steps.mp4
2.5 MB
5.4. Cluster Methods for Categorical Variables/29.Using cluster analysis and decision trees together.en.srt
15.2 kB
4.3. Visualizing and Reporting Cluster Solutions/24.Line graphs.en.srt
12.2 kB
7.6. Association Rules and Sequence Detection/38.Interpreting association rules.en.srt
11.5 kB
6.5. Anomaly Detection/32.The k = 1 trick.en.srt
11.3 kB
3.2. K-Means/13.Interpreting a box plot.en.srt
11.3 kB
5.4. Cluster Methods for Categorical Variables/31.A self organizing map example.en.srt
11.3 kB
5.4. Cluster Methods for Categorical Variables/25.Relating clusters to categories statistically.en.srt
11.0 kB
6.5. Anomaly Detection/34.Using SOM for anomaly detection.en.srt
10.1 kB
3.2. K-Means/19.Finding optimum value for k - k = 4.en.srt
9.8 kB
1.Introduction/04.What is unsupervised machine learning.en.srt
9.7 kB
3.2. K-Means/15.Interpreting cluster analysis output.en.srt
9.6 kB
2.1. What Is Cluster Analysis/05.Looking at the data with a 2D scatter plot.en.srt
9.6 kB
7.6. Association Rules and Sequence Detection/36.Running association rules.en.srt
9.6 kB
2.1. What Is Cluster Analysis/09.Methods for measuring distance.en.srt
9.5 kB
7.6. Association Rules and Sequence Detection/41.Sequence detection.en.srt
9.1 kB
5.4. Cluster Methods for Categorical Variables/27.Running a multiple correspondence analysis.en.srt
8.7 kB
2.1. What Is Cluster Analysis/10.What is k-nearest neighbors.en.srt
8.7 kB
2.1. What Is Cluster Analysis/06.Understanding hierarchical cluster analysis.en.srt
8.6 kB
3.2. K-Means/18.Finding optimum value for k - k = 3.en.srt
8.4 kB
4.3. Visualizing and Reporting Cluster Solutions/22.Summarizing cluster means in a table.en.srt
8.4 kB
7.6. Association Rules and Sequence Detection/35.Intro to association rules and sequence analysis.en.srt
8.0 kB
3.2. K-Means/20.Finding optimum value for k - k = 5.en.srt
8.0 kB
7.6. Association Rules and Sequence Detection/39.Putting association rules to use.en.srt
8.0 kB
3.2. K-Means/17.Which cases should be used with k-means.en.srt
7.8 kB
5.4. Cluster Methods for Categorical Variables/30.A BIRCH_two-step example.en.srt
7.7 kB
6.5. Anomaly Detection/33.Anomaly detection algorithms.en.srt
7.0 kB
2.1. What Is Cluster Analysis/07.Running hierarchical cluster analysis.en.srt
6.7 kB
2.1. What Is Cluster Analysis/08.Interpreting a dendrogram.en.srt
6.2 kB
4.3. Visualizing and Reporting Cluster Solutions/23.Traffic Light feature in Excel.en.srt
5.8 kB
3.2. K-Means/21.What the best solution.en.srt
5.7 kB
3.2. K-Means/14.Running a k-means cluster analysis.en.srt
5.4 kB
7.6. Association Rules and Sequence Detection/37.Some association rules terminology.en.srt
5.3 kB
3.2. K-Means/12.Which variables should be used with k-means.en.srt
5.2 kB
5.4. Cluster Methods for Categorical Variables/28.Interpreting a perceptual map.en.srt
5.2 kB
5.4. Cluster Methods for Categorical Variables/26.Relating clusters to categories visually.en.srt
5.0 kB
7.6. Association Rules and Sequence Detection/40.Comparing clustering and association rules.en.srt
4.6 kB
1.Introduction/02.What you should know.en.srt
4.0 kB
3.2. K-Means/16.What does silhouette mean.en.srt
3.7 kB
3.2. K-Means/11.How does k-means work.en.srt
3.3 kB
8.Conclusion/42.Next steps.en.srt
2.8 kB
1.Introduction/03.Using the exercise files.en.srt
2.2 kB
1.Introduction/01.Welcome.en.srt
1.3 kB
==查看完整文档列表==
上一个:
Friday.1995.DC.1080p.BluRay.x264.AAC-ETRG
1.5 GB
下一个:
Timea, Tammy, Sandra Luberc Triple stacked & Fucked 0% pussy SZ382.mp4
1.4 GB
猜你喜欢
Linux High Availability Clustering
325.9 MB
Packt.Clustering.and.Classification.with.Machine.Learning...
1.0 GB
LiveLessons - Linux High Availability Clustering
8.3 GB
PluralSight Docker Swarm Native Docker Clustering...
477.1 MB
Pluralsight - Building Distributed Systems with Akka NET...
168.2 MB
Introduction To Linux High Availability Clustering
370.4 MB
Pluralsight - Docker Swarm - Native Docker Clustering
477.0 MB
Pluralsight - Implementing Failover Clustering and...
645.3 MB
[ FreeCourseWeb.com ] Udemy - Akka Remoting and...
3.6 GB
[ FreeCourseWeb.com ] Oreilly - Machine Learning Series-...
188.9 MB