磁力狗
导航切换
首页
最新地址
最新地址
最新地址
最新地址
搜索磁力
BT种子名称
[FreeCourseSite.com] Udemy - Machine Learning with Javascript
请保存以下最新地址
clgou.icu
clgougou.cc
clg.dog
clgougou.com
BT种子基本信息
种子哈希:
c3d9a51856dd6f9f28d7d0cff6db01aee7b78410
文档大小:
7.3 GB
文档个数:
358
个文档
下载次数:
3026
次
下载速度:
极快
收录时间:
2023-09-16
最近下载:
2025-07-28
下载磁力链接
magnet:?xt=urn:btih:C3D9A51856DD6F9F28D7D0CFF6DB01AEE7B78410
复制磁力链接到
PikPak
、utorrent、Bitcomet、迅雷、115、百度网盘等下载工具进行下载。
下载BT种子
磁力链接
种子下载
迅雷下载
二维码
51凤楼
91视频
91短视频
51品茶
逼哩逼哩
萝莉岛
欲漫涩
草榴社区
含羞草
抖阴破解版
TikTok成人版
成人快手
哆哔涩漫
成人DeepSeek
极乐禁地
文档列表
05 - Getting Started with Gradient Descent/009 Why a Learning Rate.mp4
155.7 MB
02 - Algorithm Overview/013 Investigating Optimal K Values.mp4
117.9 MB
06 - Gradient Descent with Tensorflow/013 How it All Works Together!.mp4
115.9 MB
05 - Getting Started with Gradient Descent/012 Multiple Terms in Action.mp4
108.3 MB
06 - Gradient Descent with Tensorflow/008 Interpreting Results.mp4
94.0 MB
05 - Getting Started with Gradient Descent/007 Gradient Descent in Action.mp4
93.5 MB
13 - Performance Optimization/006 Measuring Memory Usage.mp4
90.0 MB
07 - Increasing Performance with Vectorized Solutions/013 Moving Towards Multivariate Regression.mp4
89.1 MB
10 - Natural Binary Classification/013 A Touch More Refactoring.mp4
82.5 MB
04 - Applications of Tensorflow/011 Normalization or Standardization.mp4
81.7 MB
05 - Getting Started with Gradient Descent/003 Understanding Gradient Descent.mp4
81.7 MB
12 - Image Recognition In Action/008 Debugging the Calculation Process.mp4
81.4 MB
04 - Applications of Tensorflow/014 Debugging Calculations.mp4
78.7 MB
11 - Multi-Value Classification/004 A Single Instance Approach.mp4
78.0 MB
07 - Increasing Performance with Vectorized Solutions/014 Refactoring for Multivariate Analysis.mp4
75.9 MB
05 - Getting Started with Gradient Descent/004 Guessing Coefficients with MSE.mp4
74.3 MB
03 - Onwards to Tensorflow JS!/003 Tensor Shape and Dimension.mp4
73.7 MB
02 - Algorithm Overview/001 How K-Nearest Neighbor Works.mp4
73.1 MB
04 - Applications of Tensorflow/008 Loading CSV Data.mp4
72.2 MB
11 - Multi-Value Classification/009 Marginal vs Conditional Probability.mp4
71.7 MB
06 - Gradient Descent with Tensorflow/005 Initial Gradient Descent Implementation.mp4
71.0 MB
07 - Increasing Performance with Vectorized Solutions/002 Refactoring to One Equation.mp4
66.9 MB
09 - Gradient Descent Alterations/001 Batch and Stochastic Gradient Descent.mp4
66.8 MB
01 - What is Machine Learning/005 A Complete Walkthrough.mp4
66.4 MB
01 - What is Machine Learning/004 Solving Machine Learning Problems.mp4
65.8 MB
12 - Image Recognition In Action/006 Implementing an Accuracy Gauge.mp4
65.2 MB
06 - Gradient Descent with Tensorflow/012 Simplification with Matrix Multiplication.mp4
63.7 MB
04 - Applications of Tensorflow/003 KNN with Tensorflow.mp4
62.4 MB
02 - Algorithm Overview/016 N-Dimension Distance.mp4
62.4 MB
02 - Algorithm Overview/003 Implementing KNN.mp4
62.2 MB
07 - Increasing Performance with Vectorized Solutions/003 A Few More Changes.mp4
61.4 MB
10 - Natural Binary Classification/016 Variable Decision Boundaries.mp4
61.3 MB
02 - Algorithm Overview/017 Arbitrary Feature Spaces.mp4
60.9 MB
07 - Increasing Performance with Vectorized Solutions/007 Dealing with Bad Accuracy.mp4
60.5 MB
02 - Algorithm Overview/022 Feature Selection with KNN.mp4
60.1 MB
07 - Increasing Performance with Vectorized Solutions/005 Calculating Model Accuracy.mp4
59.2 MB
02 - Algorithm Overview/020 Normalization with MinMax.mp4
57.0 MB
10 - Natural Binary Classification/011 Updating Linear Regression for Logistic Regression.mp4
56.9 MB
02 - Algorithm Overview/019 Feature Normalization.mp4
56.7 MB
09 - Gradient Descent Alterations/003 Determining Batch Size and Quantity.mp4
56.5 MB
07 - Increasing Performance with Vectorized Solutions/015 Learning Rate Optimization.mp4
55.6 MB
06 - Gradient Descent with Tensorflow/006 Calculating MSE Slopes.mp4
53.5 MB
09 - Gradient Descent Alterations/005 Evaluating Batch Gradient Descent Results.mp4
53.2 MB
14 - Appendix Custom CSV Loader/008 Extracting Data Columns.mp4
53.1 MB
07 - Increasing Performance with Vectorized Solutions/010 Reapplying Standardization.mp4
52.6 MB
02 - Algorithm Overview/014 Updating KNN for Multiple Features.mp4
51.2 MB
14 - Appendix Custom CSV Loader/010 Splitting Test and Training.mp4
50.7 MB
02 - Algorithm Overview/002 Lodash Review.mp4
50.6 MB
01 - What is Machine Learning/009 Dataset Structures.mp4
50.6 MB
04 - Applications of Tensorflow/006 Averaging Top Values.mp4
49.8 MB
07 - Increasing Performance with Vectorized Solutions/006 Implementing Coefficient of Determination.mp4
49.8 MB
10 - Natural Binary Classification/007 Project Setup for Logistic Regression.mp4
49.2 MB
03 - Onwards to Tensorflow JS!/001 Let's Get Our Bearings.mp4
49.1 MB
13 - Performance Optimization/005 Shallow vs Retained Memory Usage.mp4
48.9 MB
02 - Algorithm Overview/018 Magnitude Offsets in Features.mp4
48.5 MB
02 - Algorithm Overview/010 Gauging Accuracy.mp4
48.2 MB
07 - Increasing Performance with Vectorized Solutions/001 Refactoring the Linear Regression Class.mp4
48.1 MB
02 - Algorithm Overview/005 Testing the Algorithm.mp4
47.1 MB
11 - Multi-Value Classification/010 Sigmoid vs Softmax.mp4
46.8 MB
06 - Gradient Descent with Tensorflow/010 More on Matrix Multiplication.mp4
45.7 MB
10 - Natural Binary Classification/017 Mean Squared Error vs Cross Entropy.mp4
45.7 MB
13 - Performance Optimization/017 Plotting Cost History.mp4
45.4 MB
03 - Onwards to Tensorflow JS!/004 Elementwise Operations.mp4
45.3 MB
10 - Natural Binary Classification/019 Finishing the Cost Refactor.mp4
44.2 MB
11 - Multi-Value Classification/011 Refactoring Sigmoid to Softmax.mp4
43.8 MB
11 - Multi-Value Classification/008 Training a Multinominal Model.mp4
43.2 MB
13 - Performance Optimization/013 Tidying the Training Loop.mp4
43.1 MB
07 - Increasing Performance with Vectorized Solutions/011 Fixing Standardization Issues.mp4
43.0 MB
04 - Applications of Tensorflow/010 Reporting Error Percentages.mp4
42.7 MB
04 - Applications of Tensorflow/012 Numerical Standardization with Tensorflow.mp4
42.1 MB
08 - Plotting Data with Javascript/002 Plotting MSE Values.mp4
41.6 MB
05 - Getting Started with Gradient Descent/008 Quick Breather and Review.mp4
40.9 MB
02 - Algorithm Overview/009 Generalizing KNN.mp4
40.9 MB
02 - Algorithm Overview/021 Applying Normalization.mp4
40.8 MB
12 - Image Recognition In Action/002 Greyscale Values.mp4
40.3 MB
12 - Image Recognition In Action/005 Encoding Label Values.mp4
40.1 MB
10 - Natural Binary Classification/018 Refactoring with Cross Entropy.mp4
40.1 MB
02 - Algorithm Overview/004 Finishing KNN Implementation.mp4
39.8 MB
12 - Image Recognition In Action/004 Flattening Image Data.mp4
38.8 MB
03 - Onwards to Tensorflow JS!/002 A Plan to Move Forward.mp4
38.7 MB
12 - Image Recognition In Action/003 Many Features.mp4
38.5 MB
04 - Applications of Tensorflow/013 Applying Standardization.mp4
38.3 MB
08 - Plotting Data with Javascript/003 Plotting MSE History against B Values.mp4
37.9 MB
04 - Applications of Tensorflow/004 Maintaining Order Relationships.mp4
37.9 MB
13 - Performance Optimization/018 NaN in Cost History.mp4
37.6 MB
08 - Plotting Data with Javascript/001 Observing Changing Learning Rate and MSE.mp4
37.1 MB
10 - Natural Binary Classification/005 Decision Boundaries.mp4
36.7 MB
01 - What is Machine Learning/008 Identifying Relevant Data.mp4
35.6 MB
09 - Gradient Descent Alterations/006 Making Predictions with the Model.mp4
35.5 MB
02 - Algorithm Overview/012 Refactoring Accuracy Reporting.mp4
35.5 MB
13 - Performance Optimization/021 Improving Model Accuracy.mp4
35.3 MB
10 - Natural Binary Classification/003 Bad Equation Fits.mp4
35.2 MB
10 - Natural Binary Classification/020 Plotting Changing Cost History.mp4
34.9 MB
02 - Algorithm Overview/011 Printing a Report.mp4
34.9 MB
10 - Natural Binary Classification/009 Importing Vehicle Data.mp4
34.7 MB
14 - Appendix Custom CSV Loader/009 Shuffling Data via Seed Phrase.mp4
34.5 MB
07 - Increasing Performance with Vectorized Solutions/016 Recording MSE History.mp4
34.3 MB
02 - Algorithm Overview/015 Multi-Dimensional KNN.mp4
33.5 MB
13 - Performance Optimization/007 Releasing References.mp4
33.4 MB
06 - Gradient Descent with Tensorflow/009 Matrix Multiplication.mp4
32.1 MB
13 - Performance Optimization/019 Fixing Cost History.mp4
32.1 MB
10 - Natural Binary Classification/004 The Sigmoid Equation.mp4
31.8 MB
11 - Multi-Value Classification/005 Refactoring to Multi-Column Weights.mp4
31.7 MB
03 - Onwards to Tensorflow JS!/010 Summing Values Along an Axis.mp4
31.5 MB
05 - Getting Started with Gradient Descent/002 Why Linear Regression.mp4
31.4 MB
10 - Natural Binary Classification/010 Encoding Label Values.mp4
31.3 MB
05 - Getting Started with Gradient Descent/010 Answering Common Questions.mp4
31.3 MB
04 - Applications of Tensorflow/005 Sorting Tensors.mp4
30.9 MB
11 - Multi-Value Classification/006 A Problem to Test Multinominal Classification.mp4
30.2 MB
11 - Multi-Value Classification/003 A Smarter Refactor!.mp4
29.9 MB
02 - Algorithm Overview/023 Objective Feature Picking.mp4
29.8 MB
03 - Onwards to Tensorflow JS!/008 Creating Slices of Data.mp4
29.3 MB
07 - Increasing Performance with Vectorized Solutions/017 Updating Learning Rate.mp4
29.3 MB
03 - Onwards to Tensorflow JS!/009 Tensor Concatenation.mp4
29.2 MB
02 - Algorithm Overview/007 Test and Training Data.mp4
28.7 MB
03 - Onwards to Tensorflow JS!/011 Massaging Dimensions with ExpandDims.mp4
28.5 MB
13 - Performance Optimization/008 Measuring Footprint Reduction.mp4
28.2 MB
04 - Applications of Tensorflow/007 Moving to the Editor.mp4
28.1 MB
06 - Gradient Descent with Tensorflow/003 Default Algorithm Options.mp4
27.9 MB
09 - Gradient Descent Alterations/004 Iterating Over Batches.mp4
27.7 MB
06 - Gradient Descent with Tensorflow/007 Updating Coefficients.mp4
27.3 MB
02 - Algorithm Overview/006 Interpreting Bad Results.mp4
26.9 MB
06 - Gradient Descent with Tensorflow/001 Project Overview.mp4
26.2 MB
03 - Onwards to Tensorflow JS!/005 Broadcasting Operations.mp4
25.4 MB
14 - Appendix Custom CSV Loader/006 Parsing Number Values.mp4
25.2 MB
09 - Gradient Descent Alterations/002 Refactoring Towards Batch Gradient Descent.mp4
24.7 MB
07 - Increasing Performance with Vectorized Solutions/009 Data Processing in a Helper Method.mp4
24.6 MB
10 - Natural Binary Classification/012 The Sigmoid Equation with Logistic Regression.mp4
24.4 MB
12 - Image Recognition In Action/009 Dealing with Zero Variances.mp4
24.1 MB
01 - What is Machine Learning/007 Problem Outline.mp4
24.0 MB
07 - Increasing Performance with Vectorized Solutions/012 Massaging Learning Rates.mp4
23.9 MB
06 - Gradient Descent with Tensorflow/011 Matrix Form of Slope Equations.mp4
23.8 MB
13 - Performance Optimization/004 The Javascript Garbage Collector.mp4
23.7 MB
10 - Natural Binary Classification/014 Gauging Classification Accuracy.mp4
23.4 MB
11 - Multi-Value Classification/012 Implementing Accuracy Gauges.mp4
23.1 MB
13 - Performance Optimization/003 Creating Memory Snapshots.mp4
22.8 MB
13 - Performance Optimization/015 One More Optimization.mp4
22.5 MB
05 - Getting Started with Gradient Descent/005 Observations Around MSE.mp4
22.5 MB
13 - Performance Optimization/016 Final Memory Report.mp4
22.1 MB
02 - Algorithm Overview/024 Evaluating Different Feature Values.mp4
22.0 MB
04 - Applications of Tensorflow/009 Running an Analysis.mp4
21.8 MB
05 - Getting Started with Gradient Descent/006 Derivatives!.mp4
21.7 MB
13 - Performance Optimization/010 Tensorflow's Eager Memory Usage.mp4
21.1 MB
10 - Natural Binary Classification/015 Implementing a Test Function.mp4
21.0 MB
11 - Multi-Value Classification/007 Classifying Continuous Values.mp4
20.6 MB
06 - Gradient Descent with Tensorflow/002 Data Loading.mp4
20.5 MB
04 - Applications of Tensorflow/001 KNN with Regression.mp4
19.9 MB
07 - Increasing Performance with Vectorized Solutions/008 Reminder on Standardization.mp4
19.7 MB
13 - Performance Optimization/001 Handing Large Datasets.mp4
19.4 MB
04 - Applications of Tensorflow/015 What Now.mp4
18.6 MB
10 - Natural Binary Classification/002 Logistic Regression in Action.mp4
18.6 MB
01 - What is Machine Learning/011 What Type of Problem.mp4
17.7 MB
05 - Getting Started with Gradient Descent/011 Gradient Descent with Multiple Terms.mp4
17.6 MB
12 - Image Recognition In Action/010 Backfilling Variance.mp4
17.3 MB
13 - Performance Optimization/002 Minimizing Memory Usage.mp4
15.9 MB
04 - Applications of Tensorflow/002 A Change in Data Structure.mp4
15.8 MB
11 - Multi-Value Classification/002 A Smart Refactor to Multinominal Analysis.mp4
15.2 MB
14 - Appendix Custom CSV Loader/007 Custom Value Parsing.mp4
14.7 MB
13 - Performance Optimization/012 Implementing TF Tidy.mp4
14.3 MB
13 - Performance Optimization/020 Massaging Learning Parameters.mp4
14.2 MB
02 - Algorithm Overview/008 Randomizing Test Data.mp4
14.1 MB
01 - What is Machine Learning/010 Recording Observation Data.mp4
13.3 MB
07 - Increasing Performance with Vectorized Solutions/004 Same Results Or Not.mp4
12.6 MB
11 - Multi-Value Classification/013 Calculating Accuracy.mp4
12.2 MB
13 - Performance Optimization/009 Optimization Tensorflow Memory Usage.mp4
12.0 MB
13 - Performance Optimization/014 Measuring Reduced Memory Usage.mp4
11.5 MB
03 - Onwards to Tensorflow JS!/007 Tensor Accessors.mp4
11.5 MB
03 - Onwards to Tensorflow JS!/006 Logging Tensor Data.mp4
11.2 MB
05 - Getting Started with Gradient Descent/001 Linear Regression.mp4
10.2 MB
13 - Performance Optimization/011 Cleaning up Tensors with Tidy.mp4
9.9 MB
10 - Natural Binary Classification/001 Introducing Logistic Regression.mp4
9.4 MB
06 - Gradient Descent with Tensorflow/004 Formulating the Training Loop.mp4
9.1 MB
12 - Image Recognition In Action/001 Handwriting Recognition.mp4
8.8 MB
01 - What is Machine Learning/001 Getting Started - How to Get Help.mp4
8.8 MB
01 - What is Machine Learning/006 App Setup.mp4
8.5 MB
14 - Appendix Custom CSV Loader/005 Dropping Trailing Columns.mp4
8.0 MB
12 - Image Recognition In Action/007 Unchanging Accuracy.mp4
7.4 MB
14 - Appendix Custom CSV Loader/004 Splitting into Columns.mp4
7.0 MB
14 - Appendix Custom CSV Loader/003 Reading Files from Disk.mp4
6.9 MB
11 - Multi-Value Classification/001 Multinominal Logistic Regression.mp4
6.9 MB
14 - Appendix Custom CSV Loader/001 Loading CSV Files.mp4
6.3 MB
14 - Appendix Custom CSV Loader/002 A Test Dataset.mp4
3.9 MB
10 - Natural Binary Classification/006 Changes for Logistic Regression.mp4
3.6 MB
01 - What is Machine Learning/002 diagrams.zip
808.8 kB
10 - Natural Binary Classification/008 regressions.zip
35.1 kB
05 - Getting Started with Gradient Descent/009 Why a Learning Rate_en.srt
27.2 kB
06 - Gradient Descent with Tensorflow/013 How it All Works Together!_en.srt
22.5 kB
05 - Getting Started with Gradient Descent/003 Understanding Gradient Descent_en.srt
20.6 kB
03 - Onwards to Tensorflow JS!/003 Tensor Shape and Dimension_en.srt
20.0 kB
07 - Increasing Performance with Vectorized Solutions/013 Moving Towards Multivariate Regression_en.srt
19.6 kB
05 - Getting Started with Gradient Descent/007 Gradient Descent in Action_en.srt
19.1 kB
05 - Getting Started with Gradient Descent/012 Multiple Terms in Action_en.srt
17.4 kB
11 - Multi-Value Classification/009 Marginal vs Conditional Probability_en.srt
16.6 kB
02 - Algorithm Overview/016 N-Dimension Distance_en.srt
16.4 kB
11 - Multi-Value Classification/004 A Single Instance Approach_en.srt
16.2 kB
05 - Getting Started with Gradient Descent/004 Guessing Coefficients with MSE_en.srt
16.2 kB
06 - Gradient Descent with Tensorflow/008 Interpreting Results_en.srt
16.1 kB
04 - Applications of Tensorflow/008 Loading CSV Data_en.srt
16.1 kB
01 - What is Machine Learning/005 A Complete Walkthrough_en.srt
15.8 kB
02 - Algorithm Overview/002 Lodash Review_en.srt
15.8 kB
06 - Gradient Descent with Tensorflow/012 Simplification with Matrix Multiplication_en.srt
15.4 kB
04 - Applications of Tensorflow/003 KNN with Tensorflow_en.srt
15.4 kB
06 - Gradient Descent with Tensorflow/005 Initial Gradient Descent Implementation_en.srt
14.7 kB
07 - Increasing Performance with Vectorized Solutions/002 Refactoring to One Equation_en.srt
14.4 kB
13 - Performance Optimization/006 Measuring Memory Usage_en.srt
14.2 kB
07 - Increasing Performance with Vectorized Solutions/005 Calculating Model Accuracy_en.srt
14.0 kB
02 - Algorithm Overview/017 Arbitrary Feature Spaces_en.srt
14.0 kB
02 - Algorithm Overview/001 How K-Nearest Neighbor Works_en.srt
13.9 kB
06 - Gradient Descent with Tensorflow/003 Default Algorithm Options_en.srt
13.5 kB
02 - Algorithm Overview/022 Feature Selection with KNN_en.srt
13.4 kB
12 - Image Recognition In Action/008 Debugging the Calculation Process_en.srt
13.3 kB
07 - Increasing Performance with Vectorized Solutions/015 Learning Rate Optimization_en.srt
13.1 kB
09 - Gradient Descent Alterations/004 Iterating Over Batches_en.srt
12.9 kB
04 - Applications of Tensorflow/005 Sorting Tensors_en.srt
12.8 kB
10 - Natural Binary Classification/005 Decision Boundaries_en.srt
12.8 kB
09 - Gradient Descent Alterations/006 Making Predictions with the Model_en.srt
12.7 kB
03 - Onwards to Tensorflow JS!/011 Massaging Dimensions with ExpandDims_en.srt
12.7 kB
14 - Appendix Custom CSV Loader/010 Splitting Test and Training_en.srt
12.7 kB
03 - Onwards to Tensorflow JS!/004 Elementwise Operations_en.srt
12.6 kB
03 - Onwards to Tensorflow JS!/001 Let's Get Our Bearings_en.srt
12.6 kB
07 - Increasing Performance with Vectorized Solutions/007 Dealing with Bad Accuracy_en.srt
12.5 kB
07 - Increasing Performance with Vectorized Solutions/014 Refactoring for Multivariate Analysis_en.srt
12.4 kB
07 - Increasing Performance with Vectorized Solutions/001 Refactoring the Linear Regression Class_en.srt
12.4 kB
02 - Algorithm Overview/019 Feature Normalization_en.srt
12.4 kB
04 - Applications of Tensorflow/012 Numerical Standardization with Tensorflow_en.srt
12.3 kB
10 - Natural Binary Classification/013 A Touch More Refactoring_en.srt
12.2 kB
04 - Applications of Tensorflow/011 Normalization or Standardization_en.srt
12.1 kB
03 - Onwards to Tensorflow JS!/008 Creating Slices of Data_en.srt
12.1 kB
07 - Increasing Performance with Vectorized Solutions/006 Implementing Coefficient of Determination_en.srt
12.0 kB
09 - Gradient Descent Alterations/001 Batch and Stochastic Gradient Descent_en.srt
11.7 kB
06 - Gradient Descent with Tensorflow/009 Matrix Multiplication_en.srt
11.6 kB
05 - Getting Started with Gradient Descent/006 Derivatives!_en.srt
11.4 kB
10 - Natural Binary Classification/002 Logistic Regression in Action_en.srt
11.2 kB
03 - Onwards to Tensorflow JS!/005 Broadcasting Operations_en.srt
11.0 kB
02 - Algorithm Overview/020 Normalization with MinMax_en.srt
10.9 kB
04 - Applications of Tensorflow/004 Maintaining Order Relationships_en.srt
10.8 kB
02 - Algorithm Overview/014 Updating KNN for Multiple Features_en.srt
10.8 kB
02 - Algorithm Overview/003 Implementing KNN_en.srt
10.7 kB
07 - Increasing Performance with Vectorized Solutions/017 Updating Learning Rate_en.srt
10.6 kB
11 - Multi-Value Classification/010 Sigmoid vs Softmax_en.srt
10.5 kB
13 - Performance Optimization/004 The Javascript Garbage Collector_en.srt
10.4 kB
07 - Increasing Performance with Vectorized Solutions/003 A Few More Changes_en.srt
10.3 kB
12 - Image Recognition In Action/009 Dealing with Zero Variances_en.srt
10.3 kB
04 - Applications of Tensorflow/010 Reporting Error Percentages_en.srt
10.2 kB
06 - Gradient Descent with Tensorflow/006 Calculating MSE Slopes_en.srt
9.9 kB
06 - Gradient Descent with Tensorflow/011 Matrix Form of Slope Equations_en.srt
9.8 kB
01 - What is Machine Learning/004 Solving Machine Learning Problems_en.srt
9.8 kB
06 - Gradient Descent with Tensorflow/001 Project Overview_en.srt
9.7 kB
12 - Image Recognition In Action/005 Encoding Label Values_en.srt
9.7 kB
09 - Gradient Descent Alterations/005 Evaluating Batch Gradient Descent Results_en.srt
9.6 kB
13 - Performance Optimization/005 Shallow vs Retained Memory Usage_en.srt
9.6 kB
05 - Getting Started with Gradient Descent/005 Observations Around MSE_en.srt
9.5 kB
01 - What is Machine Learning/009 Dataset Structures_en.srt
9.5 kB
09 - Gradient Descent Alterations/003 Determining Batch Size and Quantity_en.srt
9.5 kB
10 - Natural Binary Classification/007 Project Setup for Logistic Regression_en.srt
9.4 kB
07 - Increasing Performance with Vectorized Solutions/011 Fixing Standardization Issues_en.srt
9.4 kB
10 - Natural Binary Classification/017 Mean Squared Error vs Cross Entropy_en.srt
9.4 kB
02 - Algorithm Overview/018 Magnitude Offsets in Features_en.srt
9.3 kB
03 - Onwards to Tensorflow JS!/007 Tensor Accessors_en.srt
9.1 kB
02 - Algorithm Overview/004 Finishing KNN Implementation_en.srt
9.1 kB
14 - Appendix Custom CSV Loader/009 Shuffling Data via Seed Phrase_en.srt
9.0 kB
10 - Natural Binary Classification/003 Bad Equation Fits_en.srt
9.0 kB
10 - Natural Binary Classification/015 Implementing a Test Function_en.srt
8.9 kB
03 - Onwards to Tensorflow JS!/009 Tensor Concatenation_en.srt
8.9 kB
07 - Increasing Performance with Vectorized Solutions/010 Reapplying Standardization_en.srt
8.9 kB
11 - Multi-Value Classification/002 A Smart Refactor to Multinominal Analysis_en.srt
8.7 kB
08 - Plotting Data with Javascript/002 Plotting MSE Values_en.srt
8.6 kB
04 - Applications of Tensorflow/001 KNN with Regression_en.srt
8.4 kB
03 - Onwards to Tensorflow JS!/010 Summing Values Along an Axis_en.srt
8.4 kB
13 - Performance Optimization/003 Creating Memory Snapshots_en.srt
8.4 kB
07 - Increasing Performance with Vectorized Solutions/016 Recording MSE History_en.srt
8.4 kB
14 - Appendix Custom CSV Loader/008 Extracting Data Columns_en.srt
8.3 kB
02 - Algorithm Overview/010 Gauging Accuracy_en.srt
8.3 kB
12 - Image Recognition In Action/002 Greyscale Values_en.srt
8.2 kB
01 - What is Machine Learning/011 What Type of Problem_en.srt
8.1 kB
05 - Getting Started with Gradient Descent/002 Why Linear Regression_en.srt
8.0 kB
02 - Algorithm Overview/012 Refactoring Accuracy Reporting_en.srt
8.0 kB
11 - Multi-Value Classification/011 Refactoring Sigmoid to Softmax_en.srt
7.9 kB
06 - Gradient Descent with Tensorflow/002 Data Loading_en.srt
7.9 kB
13 - Performance Optimization/019 Fixing Cost History_en.srt
7.9 kB
03 - Onwards to Tensorflow JS!/002 A Plan to Move Forward_en.srt
7.9 kB
13 - Performance Optimization/002 Minimizing Memory Usage_en.srt
7.7 kB
11 - Multi-Value Classification/005 Refactoring to Multi-Column Weights_en.srt
7.7 kB
05 - Getting Started with Gradient Descent/011 Gradient Descent with Multiple Terms_en.srt
7.6 kB
02 - Algorithm Overview/005 Testing the Algorithm_en.srt
7.6 kB
13 - Performance Optimization/010 Tensorflow's Eager Memory Usage_en.srt
7.6 kB
10 - Natural Binary Classification/004 The Sigmoid Equation_en.srt
7.5 kB
11 - Multi-Value Classification/006 A Problem to Test Multinominal Classification_en.srt
7.5 kB
13 - Performance Optimization/001 Handing Large Datasets_en.srt
7.4 kB
10 - Natural Binary Classification/012 The Sigmoid Equation with Logistic Regression_en.srt
7.4 kB
07 - Increasing Performance with Vectorized Solutions/008 Reminder on Standardization_en.srt
7.3 kB
02 - Algorithm Overview/021 Applying Normalization_en.srt
7.3 kB
13 - Performance Optimization/018 NaN in Cost History_en.srt
7.3 kB
01 - What is Machine Learning/008 Identifying Relevant Data_en.srt
7.0 kB
08 - Plotting Data with Javascript/001 Observing Changing Learning Rate and MSE_en.srt
7.0 kB
13 - Performance Optimization/017 Plotting Cost History_en.srt
7.0 kB
13 - Performance Optimization/021 Improving Model Accuracy_en.srt
7.0 kB
10 - Natural Binary Classification/019 Finishing the Cost Refactor_en.srt
6.9 kB
03 - Onwards to Tensorflow JS!/006 Logging Tensor Data_en.srt
6.9 kB
04 - Applications of Tensorflow/013 Applying Standardization_en.srt
6.8 kB
14 - Appendix Custom CSV Loader/007 Custom Value Parsing_en.srt
6.8 kB
02 - Algorithm Overview/006 Interpreting Bad Results_en.srt
6.8 kB
04 - Applications of Tensorflow/002 A Change in Data Structure_en.srt
6.8 kB
02 - Algorithm Overview/015 Multi-Dimensional KNN_en.srt
6.6 kB
13 - Performance Optimization/008 Measuring Footprint Reduction_en.srt
6.6 kB
04 - Applications of Tensorflow/015 What Now_en.srt
6.6 kB
02 - Algorithm Overview/007 Test and Training Data_en.srt
6.4 kB
13 - Performance Optimization/013 Tidying the Training Loop_en.srt
6.3 kB
05 - Getting Started with Gradient Descent/010 Answering Common Questions_en.srt
6.3 kB
11 - Multi-Value Classification/003 A Smarter Refactor!_en.srt
6.0 kB
02 - Algorithm Overview/008 Randomizing Test Data_en.srt
6.0 kB
02 - Algorithm Overview/009 Generalizing KNN_en.srt
6.0 kB
07 - Increasing Performance with Vectorized Solutions/004 Same Results Or Not_en.srt
5.8 kB
10 - Natural Binary Classification/020 Plotting Changing Cost History_en.srt
5.8 kB
07 - Increasing Performance with Vectorized Solutions/009 Data Processing in a Helper Method_en.srt
5.7 kB
10 - Natural Binary Classification/014 Gauging Classification Accuracy_en.srt
5.7 kB
14 - Appendix Custom CSV Loader/006 Parsing Number Values_en.srt
5.5 kB
12 - Image Recognition In Action/003 Many Features_en.srt
5.5 kB
04 - Applications of Tensorflow/007 Moving to the Editor_en.srt
5.4 kB
02 - Algorithm Overview/011 Printing a Report_en.srt
5.3 kB
01 - What is Machine Learning/007 Problem Outline_en.srt
5.2 kB
06 - Gradient Descent with Tensorflow/007 Updating Coefficients_en.srt
5.2 kB
11 - Multi-Value Classification/013 Calculating Accuracy_en.srt
5.1 kB
06 - Gradient Descent with Tensorflow/004 Formulating the Training Loop_en.srt
5.1 kB
13 - Performance Optimization/007 Releasing References_en.srt
5.0 kB
05 - Getting Started with Gradient Descent/001 Linear Regression_en.srt
4.7 kB
02 - Algorithm Overview/024 Evaluating Different Feature Values_en.srt
4.6 kB
13 - Performance Optimization/011 Cleaning up Tensors with Tidy_en.srt
4.5 kB
12 - Image Recognition In Action/010 Backfilling Variance_en.srt
4.2 kB
10 - Natural Binary Classification/001 Introducing Logistic Regression_en.srt
4.2 kB
13 - Performance Optimization/015 One More Optimization_en.srt
4.0 kB
14 - Appendix Custom CSV Loader/005 Dropping Trailing Columns_en.srt
3.9 kB
11 - Multi-Value Classification/001 Multinominal Logistic Regression_en.srt
3.8 kB
12 - Image Recognition In Action/001 Handwriting Recognition_en.srt
3.8 kB
15 - Extras/001 Bonus!.html
3.7 kB
14 - Appendix Custom CSV Loader/001 Loading CSV Files_en.srt
3.6 kB
12 - Image Recognition In Action/007 Unchanging Accuracy_en.srt
3.3 kB
14 - Appendix Custom CSV Loader/002 A Test Dataset_en.srt
3.1 kB
13 - Performance Optimization/009 Optimization Tensorflow Memory Usage_en.srt
2.9 kB
13 - Performance Optimization/020 Massaging Learning Parameters_en.srt
2.8 kB
13 - Performance Optimization/014 Measuring Reduced Memory Usage_en.srt
2.5 kB
10 - Natural Binary Classification/006 Changes for Logistic Regression_en.srt
2.1 kB
01 - What is Machine Learning/001 Getting Started - How to Get Help_en.srt
2.0 kB
01 - What is Machine Learning/002 Course Resources.html
1.4 kB
01 - What is Machine Learning/003 Join Our Community!.html
318 Bytes
10 - Natural Binary Classification/008 Project Download.html
213 Bytes
0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
02 - Algorithm Overview/0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
09 - Gradient Descent Alterations/0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
13 - Performance Optimization/0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
0. Websites you may like/[CourseClub.Me].url
122 Bytes
02 - Algorithm Overview/0. Websites you may like/[CourseClub.Me].url
122 Bytes
09 - Gradient Descent Alterations/0. Websites you may like/[CourseClub.Me].url
122 Bytes
13 - Performance Optimization/0. Websites you may like/[CourseClub.Me].url
122 Bytes
0. Websites you may like/[GigaCourse.Com].url
49 Bytes
02 - Algorithm Overview/0. Websites you may like/[GigaCourse.Com].url
49 Bytes
09 - Gradient Descent Alterations/0. Websites you may like/[GigaCourse.Com].url
49 Bytes
13 - Performance Optimization/0. Websites you may like/[GigaCourse.Com].url
49 Bytes
==查看完整文档列表==
上一个:
Women.Under.Hitlers.Flag.S01E01.XviD-AFG[eztv.re].avi
755.0 MB
猜你喜欢
[FreeCourseSite.com] Udemy - Learn how to Build High...
2.5 GB
[FreeCourseSite.com] Udemy - Ultimate Laravel Course...
2.3 GB
[FreeCourseSite.com] Udemy - Complete Blender Creator...
20.6 GB
[FreeCourseSite.com] Udemy - Angular JS Complete Course
9.5 GB
[FreeCourseSite.com] Udemy - Easy Adsense Strategy -...
675.2 MB
[FreeCourseSite.com] Udemy - Instagram Masterclass 2018...
25.5 GB
[FreeCourseSite.com] Udemy - The Ultimate Drawing Course...
8.7 GB
[FreeCourseSite.com] Udemy - Illustrator CC 2019 MasterClass
2.0 GB
[FreeCourseSite.com] Udemy - Data Science with Python - Beginners
1.4 GB
[FreeCourseSite.com] Udemy - The Complete MySQL Bootcamp...
3.5 GB