磁力狗
导航切换
首页
最新地址
最新地址
最新地址
最新地址
搜索磁力
BT种子名称
Coursera - Introduction to Machine Learning 2024-3
请保存以下最新地址
clgou.icu
clgougou.cyou
clg.dog
磁力.dog
BT种子基本信息
种子哈希:
b46c7aaeb5fa99253ab6e5b6f0cd9ec5613cd2b1
文档大小:
1.5 GB
文档个数:
280
个文档
下载次数:
141
次
下载速度:
极快
收录时间:
2024-06-24
最近下载:
2025-01-04
DMCA/屏蔽:
DMCA/屏蔽
下载磁力链接
magnet:?xt=urn:btih:B46C7AAEB5FA99253AB6E5B6F0CD9EC5613CD2B1
复制磁力链接到
PikPak
、utorrent、Bitcomet、迅雷、115、百度网盘等下载工具进行下载。
下载BT种子
磁力链接
种子下载
迅雷下载
二维码
YouTube成人版
91视频
91短视频
51品茶
逼哩逼哩
萝莉岛
欲漫涩
草榴社区
含羞草
抖阴破解版
TikTok成人版
成人快手
乱伦社区
91AV
暗网禁地
文档列表
04_recurrent-neural-networks-for-natural-language-processing/04_alternative-approaches/01_simple-and-effective-alternative-methods-for-neural-nlp.mp4
47.6 MB
04_recurrent-neural-networks-for-natural-language-processing/01_word-embeddings/03_example-of-word-embeddings.mp4
47.5 MB
06_introduction-to-reinforcement-learning/01_reinforcement-learning/03_example-of-reinforcement-learning-in-practice.mp4
46.2 MB
02_basics-of-model-learning/01_logistic-regression-as-running-example/01_how-do-we-define-learning.mp4
43.0 MB
04_recurrent-neural-networks-for-natural-language-processing/03_recurrent-neural-networks-and-long-short-term-memory/02_long-short-term-memory.mp4
40.2 MB
04_recurrent-neural-networks-for-natural-language-processing/02_representative-example-nlp-problem-sentiment-analysis/01_neural-model-of-text.mp4
39.1 MB
06_introduction-to-reinforcement-learning/02_q-learning/03_extensions-of-q-learning.mp4
35.1 MB
05_the-transformer-network-for-natural-language-processing/02_attention-mechanism/03_self-attention-and-positional-encodings.mp4
34.9 MB
06_introduction-to-reinforcement-learning/01_reinforcement-learning/02_reinforcement-learning-problem-setup.mp4
32.5 MB
06_introduction-to-reinforcement-learning/03_deep-q-learning/02_deep-q-learning-based-on-images.mp4
30.7 MB
02_basics-of-model-learning/02_learning-via-gradient-descent/02_how-do-we-handle-big-data.mp4
29.7 MB
05_the-transformer-network-for-natural-language-processing/04_the-transformer-network/02_the-complete-transformer-network.mp4
29.3 MB
01_simple-introduction-to-machine-learning/04_applications-in-the-real-world/02_applications-in-use-and-practice.mp4
28.8 MB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/11_early-history-of-neural-networks.mp4
28.7 MB
01_simple-introduction-to-machine-learning/04_applications-in-the-real-world/01_cnn-on-real-images.mp4
26.8 MB
02_basics-of-model-learning/01_logistic-regression-as-running-example/02_how-do-we-evaluate-our-networks.mp4
26.8 MB
05_the-transformer-network-for-natural-language-processing/03_sequence-to-sequence-encoder-and-decoder/02_coupling-the-sequence-encoder-and-decoder.mp4
26.0 MB
04_recurrent-neural-networks-for-natural-language-processing/03_recurrent-neural-networks-and-long-short-term-memory/03_long-short-term-memory-review.mp4
25.8 MB
01_simple-introduction-to-machine-learning/04_applications-in-the-real-world/03_deep-learning-and-transfer-learning.mp4
24.4 MB
06_introduction-to-reinforcement-learning/03_deep-q-learning/03_connecting-deep-q-learning-with-conventional-q-learning.mp4
23.2 MB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/09_model-selection.mp4
23.2 MB
06_introduction-to-reinforcement-learning/02_q-learning/01_moving-to-a-non-myopic-policy.mp4
22.9 MB
01_simple-introduction-to-machine-learning/01_logistic-regression/05_logistic-regression.mp4
22.8 MB
06_introduction-to-reinforcement-learning/03_deep-q-learning/01_limitations-of-q-learning-and-introduction-to-deep-q-learning.mp4
22.3 MB
06_introduction-to-reinforcement-learning/02_q-learning/02_q-learning.mp4
22.1 MB
05_the-transformer-network-for-natural-language-processing/02_attention-mechanism/01_introduction-of-attention-mechanism.mp4
21.9 MB
04_recurrent-neural-networks-for-natural-language-processing/02_representative-example-nlp-problem-sentiment-analysis/04_more-details-on-how-to-learn-model-parameters.mp4
21.8 MB
05_the-transformer-network-for-natural-language-processing/03_sequence-to-sequence-encoder-and-decoder/01_attention-based-sequence-encoder.mp4
21.7 MB
04_recurrent-neural-networks-for-natural-language-processing/03_recurrent-neural-networks-and-long-short-term-memory/04_use-of-lstm-for-text-synthesis.mp4
20.9 MB
05_the-transformer-network-for-natural-language-processing/04_the-transformer-network/01_multi-head-attention.mp4
20.6 MB
04_recurrent-neural-networks-for-natural-language-processing/01_word-embeddings/02_words-to-vectors.mp4
20.3 MB
04_recurrent-neural-networks-for-natural-language-processing/03_recurrent-neural-networks-and-long-short-term-memory/01_the-recurrent-neural-network.mp4
20.2 MB
01_simple-introduction-to-machine-learning/01_logistic-regression/06_interpretation-of-logistic-regression.mp4
20.2 MB
03_image-analysis-with-convolutional-neural-networks/01_convolutional-neural-network-basics/01_motivation-diabetic-retinopathy.mp4
19.6 MB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/04_deep-learning.mp4
19.5 MB
04_recurrent-neural-networks-for-natural-language-processing/02_representative-example-nlp-problem-sentiment-analysis/02_the-softmax-function.mp4
19.4 MB
06_introduction-to-reinforcement-learning/01_reinforcement-learning/01_introduction-to-reinforcement-learning.mp4
19.4 MB
01_simple-introduction-to-machine-learning/03_convolutional-neural-networks/06_how-the-model-learns.mp4
19.0 MB
04_recurrent-neural-networks-for-natural-language-processing/02_representative-example-nlp-problem-sentiment-analysis/03_methods-for-learning-model-parameters.mp4
18.9 MB
02_basics-of-model-learning/02_learning-via-gradient-descent/01_how-do-we-learn-our-network.mp4
18.9 MB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/07_transfer-learning.mp4
18.5 MB
04_recurrent-neural-networks-for-natural-language-processing/01_word-embeddings/01_introduction-to-the-concept-of-word-vectors.mp4
18.0 MB
05_the-transformer-network-for-natural-language-processing/01_inner-products/04_intuition-into-meaning-of-inner-products-of-word-vectors.mp4
17.4 MB
01_simple-introduction-to-machine-learning/05_pytorch-basics/01_introduction-to-pytorch.mp4
17.1 MB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/06_interpretation-of-multilayer-perceptron.mp4
17.0 MB
01_simple-introduction-to-machine-learning/03_convolutional-neural-networks/01_hierarchical-structure-of-images.mp4
15.7 MB
05_the-transformer-network-for-natural-language-processing/02_attention-mechanism/02_queries-keys-and-values-of-attention-network.mp4
15.4 MB
05_the-transformer-network-for-natural-language-processing/01_inner-products/01_word-vectors-and-their-interpretation.mp4
15.0 MB
01_simple-introduction-to-machine-learning/03_convolutional-neural-networks/02_convolution-filters.mp4
14.8 MB
05_the-transformer-network-for-natural-language-processing/01_inner-products/03_inner-products-between-word-vectors.mp4
14.3 MB
01_simple-introduction-to-machine-learning/01_logistic-regression/02_why-machine-learning-is-exciting.mp4
14.3 MB
03_image-analysis-with-convolutional-neural-networks/01_convolutional-neural-network-basics/02_breakdown-of-the-convolution-1d-and-2d.mp4
13.4 MB
01_simple-introduction-to-machine-learning/01_logistic-regression/03_what-is-machine-learning.mp4
13.2 MB
03_image-analysis-with-convolutional-neural-networks/02_core-components-of-the-network/01_core-components-of-the-convolutional-layer.mp4
12.9 MB
01_simple-introduction-to-machine-learning/03_convolutional-neural-networks/07_advantages-of-hierarchical-features.mp4
12.9 MB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/02_multilayer-perceptron-math-model.mp4
12.8 MB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/01_multilayer-perceptron-concepts.mp4
12.6 MB
05_the-transformer-network-for-natural-language-processing/01_inner-products/02_relationships-between-word-vectors.mp4
10.5 MB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/05_example-document-analysis.mp4
10.0 MB
01_simple-introduction-to-machine-learning/01_logistic-regression/08_motivation-for-multilayer-perceptron.mp4
9.9 MB
03_image-analysis-with-convolutional-neural-networks/03_cnn-implementation/01_training-the-network.mp4
9.7 MB
01_simple-introduction-to-machine-learning/03_convolutional-neural-networks/05_cnn-math-model.mp4
9.3 MB
01_simple-introduction-to-machine-learning/03_convolutional-neural-networks/03_convolutional-neural-network.mp4
8.9 MB
02_basics-of-model-learning/02_learning-via-gradient-descent/03_early-stopping.mp4
8.6 MB
01_simple-introduction-to-machine-learning/04_applications-in-the-real-world/03_deep-learning-and-transfer-learning_1.4.3_Deep_Learning_and_Transfer_Learning.pdf
7.8 MB
05_the-transformer-network-for-natural-language-processing/03_sequence-to-sequence-encoder-and-decoder/03_cross-attention-in-the-sequence-to-sequence-model.mp4
7.5 MB
03_image-analysis-with-convolutional-neural-networks/03_cnn-implementation/02_transfer-learning-and-fine-tuning.mp4
7.4 MB
03_image-analysis-with-convolutional-neural-networks/02_core-components-of-the-network/03_pooling-and-fully-connected-layers.mp4
7.0 MB
03_image-analysis-with-convolutional-neural-networks/02_core-components-of-the-network/02_activation-functions.mp4
6.7 MB
02_basics-of-model-learning/03_model-learning-with-pytorch/02_model-learning-with-pytorch.mp4
6.0 MB
06_introduction-to-reinforcement-learning/01_reinforcement-learning/05_reinforcement-learning-with-pytorch.mp4
5.4 MB
03_image-analysis-with-convolutional-neural-networks/03_cnn-implementation/02_transfer-learning-and-fine-tuning_3.3.20_Transfer_Learning_and_Fine-Tuning.pdf
5.3 MB
04_recurrent-neural-networks-for-natural-language-processing/05_natural-language-processing-with-pytorch/01_natural-language-processing-with-pytorch.mp4
4.4 MB
01_simple-introduction-to-machine-learning/01_logistic-regression/03_what-is-machine-learning_1.1.15_What_is_Machine_Learning.pdf
4.3 MB
01_simple-introduction-to-machine-learning/04_applications-in-the-real-world/02_applications-in-use-and-practice_1.4.2_Applicatrions_in_use_and_practice.pdf
4.1 MB
03_image-analysis-with-convolutional-neural-networks/04_convolutional-neural-networks-with-pytorch/02_cnn-with-pytorch.mp4
3.9 MB
01_simple-introduction-to-machine-learning/04_applications-in-the-real-world/01_cnn-on-real-images_1.4.1_CNN_on_Real_Images.pdf
3.7 MB
02_basics-of-model-learning/02_learning-via-gradient-descent/02_how-do-we-handle-big-data_2.2.20_How_do_we_handle_big_data.pdf
3.1 MB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/09_model-selection_1.2.7__Model_Selection.pdf
3.0 MB
03_image-analysis-with-convolutional-neural-networks/02_core-components-of-the-network/01_core-components-of-the-convolutional-layer_3.2.10_Core_Components_of_the_Convolutional_Layer.pdf
3.0 MB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/04_deep-learning_1.2.3_Deep_Learning.pdf
2.8 MB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/01_multilayer-perceptron-concepts_1.2.1_Multilayer_Perceptron_concepts.pdf
2.7 MB
01_simple-introduction-to-machine-learning/01_logistic-regression/08_motivation-for-multilayer-perceptron_1.1.40_Motivation_for_Multilayer_Perceptron.pdf
2.7 MB
01_simple-introduction-to-machine-learning/01_logistic-regression/05_logistic-regression_1.1.20_Logistic_Regression.pdf
2.7 MB
04_recurrent-neural-networks-for-natural-language-processing/02_representative-example-nlp-problem-sentiment-analysis/01_neural-model-of-text_4.2.1_Neural_model_of_text.pdf
2.6 MB
01_simple-introduction-to-machine-learning/03_convolutional-neural-networks/07_advantages-of-hierarchical-features_1.3.6_Advantages_of_Hierarchical_Features.pdf
2.6 MB
03_image-analysis-with-convolutional-neural-networks/02_core-components-of-the-network/02_activation-functions_3.2.30_Activations_Functions.pdf
2.5 MB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/11_early-history-of-neural-networks_1.2.8_Early_History_of_Neural_Netorks.pdf
2.5 MB
02_basics-of-model-learning/02_learning-via-gradient-descent/03_early-stopping_2.2.30_Early_Stopping.pdf
2.5 MB
01_simple-introduction-to-machine-learning/01_logistic-regression/02_why-machine-learning-is-exciting_1.1.10_Why_Machine_Learning_is_Exciting.pdf
2.4 MB
01_simple-introduction-to-machine-learning/03_convolutional-neural-networks/02_convolution-filters_1.3.2_Convolution_filter.pdf
2.1 MB
01_simple-introduction-to-machine-learning/01_logistic-regression/06_interpretation-of-logistic-regression_1.1.30_Interpretatiof_Logistic_Regression.pdf
2.0 MB
02_basics-of-model-learning/01_logistic-regression-as-running-example/02_how-do-we-evaluate-our-networks_2.1.20_How_do_we_evaluate_our_networkds.pdf
1.8 MB
03_image-analysis-with-convolutional-neural-networks/01_convolutional-neural-network-basics/01_motivation-diabetic-retinopathy_3.1.10_Motivation_Diabetic_Retinopathy.pdf
1.7 MB
03_image-analysis-with-convolutional-neural-networks/01_convolutional-neural-network-basics/02_breakdown-of-the-convolution-1d-and-2d_3.1.20_Breakdown_of_the_Convolution_1D_and_2D.pdf
1.6 MB
04_recurrent-neural-networks-for-natural-language-processing/01_word-embeddings/02_words-to-vectors_4.1.2_Words_to_Vectors.pdf
1.6 MB
04_recurrent-neural-networks-for-natural-language-processing/01_word-embeddings/01_introduction-to-the-concept-of-word-vectors_4.1.1_Introduction_to_the_Concept_of_Word_Vectors.pdf
1.5 MB
01_simple-introduction-to-machine-learning/03_convolutional-neural-networks/01_hierarchical-structure-of-images_1.3.1_Hierarchical_Structure_of_Images.pdf
1.4 MB
01_simple-introduction-to-machine-learning/03_convolutional-neural-networks/05_cnn-math-model_1.3.4_Convolutional_Neural_Network__Math_Model.pdf
1.2 MB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/02_multilayer-perceptron-math-model_1.2.2_Multilayer_Perceptron_Math_Model.pdf
1.1 MB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/06_interpretation-of-multilayer-perceptron_1.2.5_Interpretation_of_Multilayer_Perceptron.pdf
1.1 MB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/07_transfer-learning_1.2.6_Transfer_Learning.pdf
1.1 MB
01_simple-introduction-to-machine-learning/03_convolutional-neural-networks/03_convolutional-neural-network_1.3.3_Convolutional_Neural_Network.pdf
1.1 MB
03_image-analysis-with-convolutional-neural-networks/02_core-components-of-the-network/03_pooling-and-fully-connected-layers_3.2.40_Pooling_and_fully_contected_layers.pdf
1.1 MB
01_simple-introduction-to-machine-learning/03_convolutional-neural-networks/06_how-the-model-learns_1.3.5_How_the_Model_Learns.pdf
1.1 MB
03_image-analysis-with-convolutional-neural-networks/03_cnn-implementation/01_training-the-network_3.3.10_Training_the_Network.pdf
1.0 MB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/05_example-document-analysis_1.2.4_Example_Document_Analysis.pdf
1.0 MB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/10_model-selection_quiz.html
208.8 kB
01_simple-introduction-to-machine-learning/04_applications-in-the-real-world/05_week-1-comprehensive_exam.html
199.7 kB
06_introduction-to-reinforcement-learning/02_q-learning/04_q-learning-quiz_quiz.html
190.4 kB
02_basics-of-model-learning/01_logistic-regression-as-running-example/01_how-do-we-define-learning_2.1.10_How_do_we_define_learning.pdf
110.4 kB
01_simple-introduction-to-machine-learning/01_logistic-regression/09_logistic-regression_quiz.html
107.1 kB
06_introduction-to-reinforcement-learning/01_reinforcement-learning/04_reinforcement-learning-quiz_quiz.html
93.5 kB
02_basics-of-model-learning/02_learning-via-gradient-descent/01_how-do-we-learn-our-network_2.2.10_How_do_we_learn_our_network.pdf
87.0 kB
06_introduction-to-reinforcement-learning/01_reinforcement-learning/03_example-of-reinforcement-learning-in-practice.en.srt
28.1 kB
04_recurrent-neural-networks-for-natural-language-processing/03_recurrent-neural-networks-and-long-short-term-memory/02_long-short-term-memory.en.srt
25.5 kB
05_the-transformer-network-for-natural-language-processing/02_attention-mechanism/03_self-attention-and-positional-encodings.en.srt
24.8 kB
02_basics-of-model-learning/01_logistic-regression-as-running-example/02_how-do-we-evaluate-our-networks.en.srt
21.1 kB
06_introduction-to-reinforcement-learning/03_deep-q-learning/01_limitations-of-q-learning-and-introduction-to-deep-q-learning.en.srt
20.3 kB
05_the-transformer-network-for-natural-language-processing/03_sequence-to-sequence-encoder-and-decoder/02_coupling-the-sequence-encoder-and-decoder.en.srt
19.7 kB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/11_early-history-of-neural-networks.en.srt
18.8 kB
04_recurrent-neural-networks-for-natural-language-processing/04_alternative-approaches/01_simple-and-effective-alternative-methods-for-neural-nlp.en.srt
18.6 kB
02_basics-of-model-learning/02_learning-via-gradient-descent/02_how-do-we-handle-big-data.en.srt
16.8 kB
04_recurrent-neural-networks-for-natural-language-processing/02_representative-example-nlp-problem-sentiment-analysis/01_neural-model-of-text.en.srt
16.4 kB
05_the-transformer-network-for-natural-language-processing/01_inner-products/04_intuition-into-meaning-of-inner-products-of-word-vectors.en.srt
16.2 kB
05_the-transformer-network-for-natural-language-processing/04_the-transformer-network/02_the-complete-transformer-network.en.srt
16.1 kB
05_the-transformer-network-for-natural-language-processing/02_attention-mechanism/03_self-attention-and-positional-encodings.en.txt
15.7 kB
04_recurrent-neural-networks-for-natural-language-processing/03_recurrent-neural-networks-and-long-short-term-memory/02_long-short-term-memory.en.txt
15.2 kB
06_introduction-to-reinforcement-learning/03_deep-q-learning/03_connecting-deep-q-learning-with-conventional-q-learning.en.srt
15.2 kB
05_the-transformer-network-for-natural-language-processing/03_sequence-to-sequence-encoder-and-decoder/01_attention-based-sequence-encoder.en.srt
15.0 kB
02_basics-of-model-learning/01_logistic-regression-as-running-example/01_how-do-we-define-learning.en.srt
14.8 kB
04_recurrent-neural-networks-for-natural-language-processing/03_recurrent-neural-networks-and-long-short-term-memory/01_the-recurrent-neural-network.en.srt
14.7 kB
06_introduction-to-reinforcement-learning/02_q-learning/01_moving-to-a-non-myopic-policy.en.srt
14.7 kB
06_introduction-to-reinforcement-learning/02_q-learning/03_extensions-of-q-learning.en.srt
14.7 kB
05_the-transformer-network-for-natural-language-processing/02_attention-mechanism/01_introduction-of-attention-mechanism.en.srt
14.6 kB
06_introduction-to-reinforcement-learning/01_reinforcement-learning/03_example-of-reinforcement-learning-in-practice.en.txt
14.5 kB
04_recurrent-neural-networks-for-natural-language-processing/01_word-embeddings/03_example-of-word-embeddings.en.srt
14.4 kB
03_image-analysis-with-convolutional-neural-networks/01_convolutional-neural-network-basics/01_motivation-diabetic-retinopathy.en.srt
14.4 kB
03_image-analysis-with-convolutional-neural-networks/01_convolutional-neural-network-basics/02_breakdown-of-the-convolution-1d-and-2d.en.srt
13.8 kB
06_introduction-to-reinforcement-learning/01_reinforcement-learning/01_introduction-to-reinforcement-learning.en.srt
12.9 kB
02_basics-of-model-learning/01_logistic-regression-as-running-example/02_how-do-we-evaluate-our-networks.en.txt
12.7 kB
04_recurrent-neural-networks-for-natural-language-processing/02_representative-example-nlp-problem-sentiment-analysis/03_methods-for-learning-model-parameters.en.srt
12.7 kB
06_introduction-to-reinforcement-learning/02_q-learning/02_q-learning.en.srt
12.6 kB
01_simple-introduction-to-machine-learning/04_applications-in-the-real-world/02_applications-in-use-and-practice.en.srt
12.6 kB
05_the-transformer-network-for-natural-language-processing/03_sequence-to-sequence-encoder-and-decoder/02_coupling-the-sequence-encoder-and-decoder.en.txt
12.5 kB
04_recurrent-neural-networks-for-natural-language-processing/03_recurrent-neural-networks-and-long-short-term-memory/03_long-short-term-memory-review.en.srt
12.0 kB
04_recurrent-neural-networks-for-natural-language-processing/03_recurrent-neural-networks-and-long-short-term-memory/04_use-of-lstm-for-text-synthesis.en.srt
11.8 kB
05_the-transformer-network-for-natural-language-processing/01_inner-products/03_inner-products-between-word-vectors.en.srt
11.7 kB
05_the-transformer-network-for-natural-language-processing/02_attention-mechanism/02_queries-keys-and-values-of-attention-network.en.srt
11.5 kB
06_introduction-to-reinforcement-learning/01_reinforcement-learning/02_reinforcement-learning-problem-setup.en.srt
11.4 kB
04_recurrent-neural-networks-for-natural-language-processing/04_alternative-approaches/01_simple-and-effective-alternative-methods-for-neural-nlp.en.txt
11.4 kB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/11_early-history-of-neural-networks.en.txt
11.3 kB
02_basics-of-model-learning/02_learning-via-gradient-descent/01_how-do-we-learn-our-network.en.srt
11.3 kB
01_simple-introduction-to-machine-learning/01_logistic-regression/05_logistic-regression.en.srt
11.2 kB
03_image-analysis-with-convolutional-neural-networks/02_core-components-of-the-network/01_core-components-of-the-convolutional-layer.en.srt
11.1 kB
01_simple-introduction-to-machine-learning/01_logistic-regression/06_interpretation-of-logistic-regression.en.srt
11.0 kB
05_the-transformer-network-for-natural-language-processing/04_the-transformer-network/01_multi-head-attention.en.srt
11.0 kB
01_simple-introduction-to-machine-learning/03_convolutional-neural-networks/02_convolution-filters.en.srt
11.0 kB
01_simple-introduction-to-machine-learning/03_convolutional-neural-networks/06_how-the-model-learns.en.srt
10.7 kB
06_introduction-to-reinforcement-learning/03_deep-q-learning/01_limitations-of-q-learning-and-introduction-to-deep-q-learning.en.txt
10.7 kB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/06_interpretation-of-multilayer-perceptron.en.srt
10.6 kB
02_basics-of-model-learning/02_learning-via-gradient-descent/02_how-do-we-handle-big-data.en.txt
10.3 kB
06_introduction-to-reinforcement-learning/03_deep-q-learning/02_deep-q-learning-based-on-images.en.srt
10.2 kB
04_recurrent-neural-networks-for-natural-language-processing/02_representative-example-nlp-problem-sentiment-analysis/01_neural-model-of-text.en.txt
10.2 kB
04_recurrent-neural-networks-for-natural-language-processing/01_word-embeddings/01_introduction-to-the-concept-of-word-vectors.en.srt
10.2 kB
01_simple-introduction-to-machine-learning/04_applications-in-the-real-world/01_cnn-on-real-images.en.srt
10.2 kB
03_image-analysis-with-convolutional-neural-networks/03_cnn-implementation/01_training-the-network.en.srt
9.7 kB
02_basics-of-model-learning/03_model-learning-with-pytorch/01_week-2-comprehensive_exam.html
9.4 kB
05_the-transformer-network-for-natural-language-processing/03_sequence-to-sequence-encoder-and-decoder/01_attention-based-sequence-encoder.en.txt
9.3 kB
04_recurrent-neural-networks-for-natural-language-processing/03_recurrent-neural-networks-and-long-short-term-memory/01_the-recurrent-neural-network.en.txt
9.3 kB
03_image-analysis-with-convolutional-neural-networks/04_convolutional-neural-networks-with-pytorch/01_week-3-comprehensive_exam.html
9.3 kB
04_recurrent-neural-networks-for-natural-language-processing/01_word-embeddings/02_words-to-vectors.en.srt
9.2 kB
02_basics-of-model-learning/01_logistic-regression-as-running-example/01_how-do-we-define-learning.en.txt
9.1 kB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/09_model-selection.en.srt
9.1 kB
03_image-analysis-with-convolutional-neural-networks/01_convolutional-neural-network-basics/01_motivation-diabetic-retinopathy.en.txt
8.9 kB
04_recurrent-neural-networks-for-natural-language-processing/02_representative-example-nlp-problem-sentiment-analysis/04_more-details-on-how-to-learn-model-parameters.en.srt
8.8 kB
01_simple-introduction-to-machine-learning/03_convolutional-neural-networks/05_cnn-math-model.en.srt
8.7 kB
05_the-transformer-network-for-natural-language-processing/01_inner-products/01_word-vectors-and-their-interpretation.en.srt
8.7 kB
04_recurrent-neural-networks-for-natural-language-processing/02_representative-example-nlp-problem-sentiment-analysis/02_the-softmax-function.en.srt
8.6 kB
01_simple-introduction-to-machine-learning/04_applications-in-the-real-world/03_deep-learning-and-transfer-learning.en.srt
8.6 kB
04_recurrent-neural-networks-for-natural-language-processing/01_word-embeddings/03_example-of-word-embeddings.en.txt
8.5 kB
04_recurrent-neural-networks-for-natural-language-processing/04_alternative-approaches/02_week-4-comprehensive_exam.html
8.5 kB
03_image-analysis-with-convolutional-neural-networks/01_convolutional-neural-network-basics/02_breakdown-of-the-convolution-1d-and-2d.en.txt
8.5 kB
05_the-transformer-network-for-natural-language-processing/04_the-transformer-network/02_the-complete-transformer-network.en.txt
8.4 kB
05_the-transformer-network-for-natural-language-processing/01_inner-products/04_intuition-into-meaning-of-inner-products-of-word-vectors.en.txt
8.4 kB
06_introduction-to-reinforcement-learning/03_deep-q-learning/03_connecting-deep-q-learning-with-conventional-q-learning.en.txt
8.0 kB
06_introduction-to-reinforcement-learning/02_q-learning/02_q-learning.en.txt
7.8 kB
06_introduction-to-reinforcement-learning/02_q-learning/01_moving-to-a-non-myopic-policy.en.txt
7.7 kB
04_recurrent-neural-networks-for-natural-language-processing/02_representative-example-nlp-problem-sentiment-analysis/03_methods-for-learning-model-parameters.en.txt
7.7 kB
01_simple-introduction-to-machine-learning/04_applications-in-the-real-world/02_applications-in-use-and-practice.en.txt
7.6 kB
05_the-transformer-network-for-natural-language-processing/01_inner-products/02_relationships-between-word-vectors.en.srt
7.6 kB
06_introduction-to-reinforcement-learning/02_q-learning/03_extensions-of-q-learning.en.txt
7.6 kB
05_the-transformer-network-for-natural-language-processing/02_attention-mechanism/01_introduction-of-attention-mechanism.en.txt
7.6 kB
04_recurrent-neural-networks-for-natural-language-processing/03_recurrent-neural-networks-and-long-short-term-memory/03_long-short-term-memory-review.en.txt
7.5 kB
01_simple-introduction-to-machine-learning/03_convolutional-neural-networks/01_hierarchical-structure-of-images.en.srt
7.4 kB
03_image-analysis-with-convolutional-neural-networks/02_core-components-of-the-network/02_activation-functions.en.srt
7.3 kB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/04_deep-learning.en.srt
7.3 kB
03_image-analysis-with-convolutional-neural-networks/02_core-components-of-the-network/01_core-components-of-the-convolutional-layer.en.txt
7.2 kB
05_the-transformer-network-for-natural-language-processing/02_attention-mechanism/02_queries-keys-and-values-of-attention-network.en.txt
7.2 kB
01_simple-introduction-to-machine-learning/01_logistic-regression/03_what-is-machine-learning.en.srt
7.2 kB
03_image-analysis-with-convolutional-neural-networks/02_core-components-of-the-network/03_pooling-and-fully-connected-layers.en.srt
7.1 kB
01_simple-introduction-to-machine-learning/01_logistic-regression/06_interpretation-of-logistic-regression.en.txt
7.0 kB
04_recurrent-neural-networks-for-natural-language-processing/03_recurrent-neural-networks-and-long-short-term-memory/04_use-of-lstm-for-text-synthesis.en.txt
7.0 kB
01_simple-introduction-to-machine-learning/01_logistic-regression/05_logistic-regression.en.txt
6.9 kB
02_basics-of-model-learning/02_learning-via-gradient-descent/01_how-do-we-learn-our-network.en.txt
6.8 kB
05_the-transformer-network-for-natural-language-processing/04_the-transformer-network/01_multi-head-attention.en.txt
6.7 kB
06_introduction-to-reinforcement-learning/01_reinforcement-learning/01_introduction-to-reinforcement-learning.en.txt
6.7 kB
06_introduction-to-reinforcement-learning/03_deep-q-learning/02_deep-q-learning-based-on-images.en.txt
6.6 kB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/02_multilayer-perceptron-math-model.en.srt
6.6 kB
01_simple-introduction-to-machine-learning/03_convolutional-neural-networks/02_convolution-filters.en.txt
6.6 kB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/07_transfer-learning.en.srt
6.5 kB
01_simple-introduction-to-machine-learning/04_applications-in-the-real-world/01_cnn-on-real-images.en.txt
6.4 kB
01_simple-introduction-to-machine-learning/05_pytorch-basics/01_introduction-to-pytorch.en.srt
6.4 kB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/06_interpretation-of-multilayer-perceptron.en.txt
6.4 kB
01_simple-introduction-to-machine-learning/01_logistic-regression/02_why-machine-learning-is-exciting.en.srt
6.4 kB
01_simple-introduction-to-machine-learning/03_convolutional-neural-networks/06_how-the-model-learns.en.txt
6.4 kB
03_image-analysis-with-convolutional-neural-networks/03_cnn-implementation/02_transfer-learning-and-fine-tuning.en.srt
6.3 kB
04_recurrent-neural-networks-for-natural-language-processing/01_word-embeddings/01_introduction-to-the-concept-of-word-vectors.en.txt
6.3 kB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/01_multilayer-perceptron-concepts.en.srt
6.3 kB
05_the-transformer-network-for-natural-language-processing/01_inner-products/03_inner-products-between-word-vectors.en.txt
6.2 kB
03_image-analysis-with-convolutional-neural-networks/03_cnn-implementation/01_training-the-network.en.txt
6.0 kB
06_introduction-to-reinforcement-learning/01_reinforcement-learning/02_reinforcement-learning-problem-setup.en.txt
6.0 kB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/03_multilayer-perceptron_quiz.html
6.0 kB
04_recurrent-neural-networks-for-natural-language-processing/01_word-embeddings/02_words-to-vectors.en.txt
5.8 kB
05_the-transformer-network-for-natural-language-processing/03_sequence-to-sequence-encoder-and-decoder/03_cross-attention-in-the-sequence-to-sequence-model.en.srt
5.5 kB
04_recurrent-neural-networks-for-natural-language-processing/02_representative-example-nlp-problem-sentiment-analysis/04_more-details-on-how-to-learn-model-parameters.en.txt
5.4 kB
01_simple-introduction-to-machine-learning/01_logistic-regression/08_motivation-for-multilayer-perceptron.en.srt
5.4 kB
01_simple-introduction-to-machine-learning/04_applications-in-the-real-world/03_deep-learning-and-transfer-learning.en.txt
5.4 kB
05_the-transformer-network-for-natural-language-processing/01_inner-products/01_word-vectors-and-their-interpretation.en.txt
5.4 kB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/09_model-selection.en.txt
5.4 kB
01_simple-introduction-to-machine-learning/03_convolutional-neural-networks/07_advantages-of-hierarchical-features.en.srt
5.3 kB
02_basics-of-model-learning/02_learning-via-gradient-descent/04_lesson-2_quiz.html
5.3 kB
04_recurrent-neural-networks-for-natural-language-processing/02_representative-example-nlp-problem-sentiment-analysis/02_the-softmax-function.en.txt
5.2 kB
01_simple-introduction-to-machine-learning/03_convolutional-neural-networks/05_cnn-math-model.en.txt
5.0 kB
03_image-analysis-with-convolutional-neural-networks/02_core-components-of-the-network/04_lesson-2_quiz.html
5.0 kB
02_basics-of-model-learning/01_logistic-regression-as-running-example/03_lesson-one_quiz.html
4.6 kB
01_simple-introduction-to-machine-learning/03_convolutional-neural-networks/01_hierarchical-structure-of-images.en.txt
4.6 kB
03_image-analysis-with-convolutional-neural-networks/02_core-components-of-the-network/03_pooling-and-fully-connected-layers.en.txt
4.6 kB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/05_example-document-analysis.en.srt
4.6 kB
01_simple-introduction-to-machine-learning/03_convolutional-neural-networks/03_convolutional-neural-network.en.srt
4.6 kB
03_image-analysis-with-convolutional-neural-networks/02_core-components-of-the-network/02_activation-functions.en.txt
4.5 kB
03_image-analysis-with-convolutional-neural-networks/01_convolutional-neural-network-basics/03_lesson-one_quiz.html
4.5 kB
04_recurrent-neural-networks-for-natural-language-processing/02_representative-example-nlp-problem-sentiment-analysis/05_lesson-2_quiz.html
4.5 kB
01_simple-introduction-to-machine-learning/01_logistic-regression/03_what-is-machine-learning.en.txt
4.5 kB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/04_deep-learning.en.txt
4.4 kB
02_basics-of-model-learning/02_learning-via-gradient-descent/03_early-stopping.en.srt
4.4 kB
04_recurrent-neural-networks-for-natural-language-processing/03_recurrent-neural-networks-and-long-short-term-memory/05_lesson-3_quiz.html
4.2 kB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/02_multilayer-perceptron-math-model.en.txt
4.1 kB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/07_transfer-learning.en.txt
4.1 kB
05_the-transformer-network-for-natural-language-processing/01_inner-products/02_relationships-between-word-vectors.en.txt
4.0 kB
01_simple-introduction-to-machine-learning/01_logistic-regression/02_why-machine-learning-is-exciting.en.txt
4.0 kB
03_image-analysis-with-convolutional-neural-networks/03_cnn-implementation/02_transfer-learning-and-fine-tuning.en.txt
3.9 kB
04_recurrent-neural-networks-for-natural-language-processing/01_word-embeddings/04_lesson-1_quiz.html
3.9 kB
03_image-analysis-with-convolutional-neural-networks/03_cnn-implementation/03_lesson-3_quiz.html
3.8 kB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/01_multilayer-perceptron-concepts.en.txt
3.8 kB
01_simple-introduction-to-machine-learning/03_convolutional-neural-networks/08_cnn-math-model_quiz.html
3.6 kB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/08_deep-learning_quiz.html
3.5 kB
01_simple-introduction-to-machine-learning/05_pytorch-basics/01_introduction-to-pytorch.en.txt
3.5 kB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/12_history-of-neural-networks_quiz.html
3.4 kB
05_the-transformer-network-for-natural-language-processing/03_sequence-to-sequence-encoder-and-decoder/03_cross-attention-in-the-sequence-to-sequence-model.en.txt
3.4 kB
01_simple-introduction-to-machine-learning/01_logistic-regression/01_course-information_instructions.html
3.4 kB
01_simple-introduction-to-machine-learning/04_applications-in-the-real-world/04_applications-in-use-and-practice_quiz.html
3.2 kB
01_simple-introduction-to-machine-learning/03_convolutional-neural-networks/07_advantages-of-hierarchical-features.en.txt
3.2 kB
01_simple-introduction-to-machine-learning/01_logistic-regression/08_motivation-for-multilayer-perceptron.en.txt
3.2 kB
01_simple-introduction-to-machine-learning/03_convolutional-neural-networks/04_cnn-concepts_quiz.html
3.1 kB
06_introduction-to-reinforcement-learning/03_deep-q-learning/04_deep-q-learning-quiz_quiz.html
3.1 kB
01_simple-introduction-to-machine-learning/01_logistic-regression/04_intro-to-machine-learning_quiz.html
3.0 kB
01_simple-introduction-to-machine-learning/03_convolutional-neural-networks/03_convolutional-neural-network.en.txt
2.9 kB
02_basics-of-model-learning/02_learning-via-gradient-descent/03_early-stopping.en.txt
2.9 kB
01_simple-introduction-to-machine-learning/02_multilayer-perceptron/05_example-document-analysis.en.txt
2.8 kB
02_basics-of-model-learning/03_model-learning-with-pytorch/02_model-learning-with-pytorch.en.srt
2.0 kB
06_introduction-to-reinforcement-learning/01_reinforcement-learning/05_reinforcement-learning-with-pytorch.en.srt
1.7 kB
04_recurrent-neural-networks-for-natural-language-processing/05_natural-language-processing-with-pytorch/01_natural-language-processing-with-pytorch.en.srt
1.5 kB
01_simple-introduction-to-machine-learning/01_logistic-regression/07_math-for-data-science_instructions.html
1.4 kB
03_image-analysis-with-convolutional-neural-networks/04_convolutional-neural-networks-with-pytorch/02_cnn-with-pytorch.en.srt
1.4 kB
02_basics-of-model-learning/03_model-learning-with-pytorch/02_model-learning-with-pytorch.en.txt
1.1 kB
06_introduction-to-reinforcement-learning/01_reinforcement-learning/05_reinforcement-learning-with-pytorch.en.txt
919 Bytes
04_recurrent-neural-networks-for-natural-language-processing/05_natural-language-processing-with-pytorch/01_natural-language-processing-with-pytorch.en.txt
806 Bytes
03_image-analysis-with-convolutional-neural-networks/04_convolutional-neural-networks-with-pytorch/02_cnn-with-pytorch.en.txt
717 Bytes
Readme.txt
124 Bytes
==查看完整文档列表==
上一个:
【高清剧集网发布 www.DDHDTV.com】认识的哥哥[第429集][中文字幕].Knowing.Bros.S01.2015.1080p.Viu.WEB-DL.H264.AAC-ZeroTV
2.9 GB
下一个:
The Promise Version 0.97.rar
5.7 GB
猜你喜欢
Introduction to Botany - James Schooley.pdf Introduction...
111.3 MB
Jeff Bezos, Walter Isaacson - introduction - Invent and...
514.2 MB
Udemy - Power BI Essentials 2020 - Introduction to...
14.6 GB
Karl Marx, Yanis Varoufakis - introduction - The...
142.8 MB
Introduction To Nanotechnology - Poole , Owens.pdf ...
168.2 MB
Introduction to ZBrush 4 - Introduction to ZBrush and 2.5D #001
80.2 MB
Meteorology.An.Introduction.to.the.Wonders.of.the.Weather...
485.4 MB
Pluralsight - Introduction to SOLIDWORKS Motion
719.1 MB
educator.com - Computer Science_ PHP with MySQL 2 in 1...
4.3 GB
Introduction to HTML5 and CSS3
1.3 GB