磁力狗
导航切换
首页
最新地址
最新地址
最新地址
最新地址
搜索磁力
BT种子名称
[CourseClub.NET] Coursera - Introduction to Deep Learning
请保存以下最新地址
clgou.icu
clgougou.cc
clg.dog
clgougou.com
BT种子基本信息
种子哈希:
70e9796992bcbb00f65f3672ae86eb335593f36e
文档大小:
1.4 GB
文档个数:
81
个文档
下载次数:
3834
次
下载速度:
极快
收录时间:
2020-03-28
最近下载:
2025-01-22
DMCA/屏蔽:
DMCA/屏蔽
下载磁力链接
magnet:?xt=urn:btih:70E9796992BCBB00F65F3672AE86EB335593F36E
复制磁力链接到
PikPak
、utorrent、Bitcomet、迅雷、115、百度网盘等下载工具进行下载。
下载BT种子
磁力链接
种子下载
迅雷下载
二维码
YouTube成人版
91视频
91短视频
51品茶
逼哩逼哩
萝莉岛
欲漫涩
草榴社区
含羞草
抖阴破解版
TikTok成人版
成人快手
乱伦社区
91AV
暗网禁地
文档列表
011.Modern CNNs/021. Training tips and tricks for deep CNNs.mp4
60.7 MB
019.Applications of RNNs/039. Practical use cases for RNNs.mp4
58.8 MB
015.Word Embeddings/030. Word embeddings.mp4
50.7 MB
018.Modern RNNs/038. Modern RNNs LSTM and GRU.mp4
50.0 MB
007.Matrix derivatives/013. Efficient MLP implementation.mp4
49.4 MB
006.The simplest neural network MLP/010. Multilayer perceptron (MLP).mp4
46.8 MB
003.Linear model as the simplest neural network/004. Linear classification.mp4
44.7 MB
010.Introduction to CNN/020. Our first CNN architecture.mp4
44.6 MB
016.Generative Adversarial Networks/033. Applications of adversarial approach.mp4
43.9 MB
010.Introduction to CNN/019. Motivation for convolutional layers.mp4
43.4 MB
014.More Autoencoders/027. Autoencoder applications.mp4
42.8 MB
008.TensorFlow framework/015. What is TensorFlow.mp4
41.4 MB
008.TensorFlow framework/016. Our first model in TensorFlow.mp4
38.6 MB
015.Word Embeddings/029. Natural language processing primer.mp4
38.5 MB
005.Stochastic methods for optimization/009. Gradient descent extensions.mp4
38.3 MB
016.Generative Adversarial Networks/032. Generative Adversarial Networks.mp4
37.9 MB
003.Linear model as the simplest neural network/003. Linear regression.mp4
37.5 MB
017.Introduction to RNN/035. Simple RNN and Backpropagation.mp4
36.8 MB
018.Modern RNNs/037. Dealing with vanishing and exploding gradients.mp4
36.6 MB
011.Modern CNNs/022. Overview of modern CNN architectures.mp4
33.8 MB
006.The simplest neural network MLP/012. Backpropagation.mp4
33.2 MB
012.Applications of CNNs/024. A glimpse of other Computer Vision tasks.mp4
32.2 MB
017.Introduction to RNN/034. Motivation for recurrent layers.mp4
31.6 MB
009.Philosophy of deep learning/017. What Deep Learning is and is not.mp4
30.9 MB
014.More Autoencoders/028. Autoencoder applications image generation, data visualization & more.mp4
29.6 MB
016.Generative Adversarial Networks/031. Generative models 101.mp4
28.0 MB
006.The simplest neural network MLP/011. Chain rule.mp4
27.9 MB
004.Regularization in machine learning/006. Overfitting problem and model validation.mp4
27.7 MB
018.Modern RNNs/036. The training of RNNs is not that easy.mp4
27.7 MB
009.Philosophy of deep learning/018. Deep learning as a language.mp4
25.8 MB
013.Intro to Unsupervised Learning/025. Unsupervised learning what it is and why bother.mp4
24.9 MB
013.Intro to Unsupervised Learning/026. Autoencoders 101.mp4
23.2 MB
002.Course intro/002. Course intro.mp4
23.2 MB
007.Matrix derivatives/014. Other matrix derivatives.mp4
22.5 MB
005.Stochastic methods for optimization/008. Stochastic gradient descent.mp4
22.1 MB
004.Regularization in machine learning/007. Model regularization.mp4
20.8 MB
012.Applications of CNNs/023. Learning new tasks with pre-trained CNNs.mp4
20.2 MB
003.Linear model as the simplest neural network/005. Gradient descent.mp4
19.9 MB
001.Specialization Promo/001. Welcome to AML specialization!.mp4
14.3 MB
015.Word Embeddings/030. Word embeddings.srt
20.7 kB
019.Applications of RNNs/039. Practical use cases for RNNs.srt
19.9 kB
006.The simplest neural network MLP/010. Multilayer perceptron (MLP).srt
19.0 kB
011.Modern CNNs/021. Training tips and tricks for deep CNNs.srt
18.6 kB
018.Modern RNNs/038. Modern RNNs LSTM and GRU.srt
17.6 kB
007.Matrix derivatives/013. Efficient MLP implementation.srt
17.0 kB
003.Linear model as the simplest neural network/004. Linear classification.srt
16.8 kB
010.Introduction to CNN/019. Motivation for convolutional layers.srt
16.4 kB
016.Generative Adversarial Networks/033. Applications of adversarial approach.srt
16.3 kB
016.Generative Adversarial Networks/032. Generative Adversarial Networks.srt
15.7 kB
015.Word Embeddings/029. Natural language processing primer.srt
15.7 kB
014.More Autoencoders/027. Autoencoder applications.srt
15.1 kB
008.TensorFlow framework/015. What is TensorFlow.srt
15.0 kB
009.Philosophy of deep learning/017. What Deep Learning is and is not.srt
14.2 kB
008.TensorFlow framework/016. Our first model in TensorFlow.srt
14.2 kB
018.Modern RNNs/037. Dealing with vanishing and exploding gradients.srt
14.0 kB
005.Stochastic methods for optimization/009. Gradient descent extensions.srt
13.7 kB
003.Linear model as the simplest neural network/003. Linear regression.srt
13.7 kB
010.Introduction to CNN/020. Our first CNN architecture.srt
13.6 kB
017.Introduction to RNN/035. Simple RNN and Backpropagation.srt
12.8 kB
009.Philosophy of deep learning/018. Deep learning as a language.srt
12.2 kB
006.The simplest neural network MLP/012. Backpropagation.srt
11.6 kB
016.Generative Adversarial Networks/031. Generative models 101.srt
11.5 kB
012.Applications of CNNs/024. A glimpse of other Computer Vision tasks.srt
11.0 kB
014.More Autoencoders/028. Autoencoder applications image generation, data visualization & more.srt
10.9 kB
017.Introduction to RNN/034. Motivation for recurrent layers.srt
10.8 kB
018.Modern RNNs/036. The training of RNNs is not that easy.srt
10.6 kB
006.The simplest neural network MLP/011. Chain rule.srt
10.2 kB
004.Regularization in machine learning/006. Overfitting problem and model validation.srt
10.0 kB
013.Intro to Unsupervised Learning/025. Unsupervised learning what it is and why bother.srt
9.8 kB
011.Modern CNNs/022. Overview of modern CNN architectures.srt
9.7 kB
002.Course intro/002. Course intro.srt
9.0 kB
007.Matrix derivatives/014. Other matrix derivatives.srt
8.8 kB
013.Intro to Unsupervised Learning/026. Autoencoders 101.srt
8.3 kB
005.Stochastic methods for optimization/008. Stochastic gradient descent.srt
8.0 kB
004.Regularization in machine learning/007. Model regularization.srt
7.6 kB
003.Linear model as the simplest neural network/005. Gradient descent.srt
7.6 kB
012.Applications of CNNs/023. Learning new tasks with pre-trained CNNs.srt
7.0 kB
001.Specialization Promo/001. Welcome to AML specialization!.srt
4.8 kB
[FCS Forum].url
133 Bytes
[FreeCourseSite.com].url
127 Bytes
[CourseClub.NET].url
123 Bytes
==查看完整文档列表==
上一个:
Garrys Mod
2.3 GB
下一个:
2017-04-11 DirtyMasseur.com - Jillian Janson (Method To My Tight Ass)
102.1 MB
猜你喜欢
[CourseClub.NET] Packtpub - Getting Started with Modern Python
420.1 MB
[CourseClub.NET] MasterClass - Frank Gehry Teaches...
1.2 GB
[CourseClub.Me] Skillshare - SEO Basics for Non-SEOs
317.3 MB
[CourseClub.NET]] Linkedin - Docker for Java Developers
269.7 MB
[CourseClub.NET] TreeHouse - Materials in Unity
640.6 MB
[CourseClub.NET] FrontendMasters - Introduction to...
619.9 MB
[CourseClub.Me] Code4Startup - Fundamental Python for...
90.1 MB
[CourseClub.NET] Pluralsight - Become a Full-stack .NET...
779.1 MB
[CourseClub.NET] Coursera - Neural Networks and Deep Learning
920.8 MB
[CourseClub.NET] Pluralsight - Building a Web App with...
2.6 GB