BT种子基本信息
- 种子哈希:6d41914c73aa9125507db10541d8c0680aaa1a73
- 文档大小:2.1 GB
- 文档个数:131个文档
- 下载次数:3872次
- 下载速度:极快
- 收录时间:2020-03-23
- 最近下载:2025-01-17
- DMCA/屏蔽:DMCA/屏蔽
文档列表
- 012.Metrics optimization/035. Classification metrics review.mp4 73.7 MB
- 018.Competitions go through/061. Microsoft Malware Classification Challenge.mp4 71.7 MB
- 015.Tips and tricks/046. Practical guide.mp4 62.0 MB
- 010.Validation/027. Data splitting strategies.mp4 58.9 MB
- 005.Feature preprocessing and generation with respect to models/010. Numeric features.mp4 50.7 MB
- 014.Hyperparameter tuning/045. Hyperparameter tuning III.mp4 49.5 MB
- 012.Metrics optimization/033. Regression metrics review I.mp4 48.6 MB
- 006.Feature extraction from text and images/015. Word2vec, CNN.mp4 48.2 MB
- 009.EDA examples/023. Springleaf competition EDA II.mp4 46.5 MB
- 014.Hyperparameter tuning/044. Hyperparameter tuning II.mp4 45.4 MB
- 008.Exploratory data analysis/019. Exploring anonymized data.mp4 45.1 MB
- 008.Exploratory data analysis/020. Visualizations.mp4 44.7 MB
- 005.Feature preprocessing and generation with respect to models/011. Categorical and ordinal features.mp4 42.5 MB
- 013.Mean encodings/042. Extensions and generalizations.mp4 41.1 MB
- 006.Feature extraction from text and images/014. Bag of words.mp4 39.9 MB
- 005.Feature preprocessing and generation with respect to models/013. Handling missing values.mp4 39.7 MB
- 018.Competitions go through/059. Crowdflower Competition.mp4 37.9 MB
- 012.Metrics optimization/037. Regression metrics optimization.mp4 37.6 MB
- 011.Data leakages/031. Expedia challenge.mp4 37.4 MB
- 018.Competitions go through/063. Acquire Valued Shoppers Challenge, part 1.mp4 36.5 MB
- 001.Welcome to How to win a data science competition/003. Course overview.mp4 36.3 MB
- 010.Validation/025. Validation and overfitting.mp4 35.7 MB
- 011.Data leakages/030. Leaderboard probing and examples of rare data leaks.mp4 35.7 MB
- 015.Tips and tricks/047. KazAnova's competition pipeline, part 1.mp4 35.5 MB
- 003.Recap of main ML algorithms/007. Recap of main ML algorithms.mp4 35.1 MB
- 005.Feature preprocessing and generation with respect to models/012. Datetime and coordinates.mp4 34.0 MB
- 002.Competition mechanics/005. Kaggle Overview [screencast].mp4 33.9 MB
- 015.Tips and tricks/048. KazAnova's competition pipeline, part 2.mp4 33.6 MB
- 018.Competitions go through/064. Acquire Valued Shoppers Challenge, part 2.mp4 32.4 MB
- 017.Ensembling/056. Stacking.mp4 32.3 MB
- 013.Mean encodings/040. Concept of mean encoding.mp4 32.0 MB
- 018.Competitions go through/062. Walmart Trip Type Classification.mp4 31.0 MB
- 017.Ensembling/057. StackNet.mp4 30.7 MB
- 012.Metrics optimization/034. Regression metrics review II.mp4 30.6 MB
- 013.Mean encodings/041. Regularization.mp4 29.7 MB
- 017.Ensembling/055. Boosting.mp4 29.3 MB
- 012.Metrics optimization/032. Motivation.mp4 28.8 MB
- 010.Validation/028. Problems occurring during validation.mp4 27.8 MB
- 012.Metrics optimization/038. Classification metrics optimization I.mp4 27.5 MB
- 010.Validation/026. Validation strategies.mp4 27.4 MB
- 008.Exploratory data analysis/021. Dataset cleaning and other things to check.mp4 27.1 MB
- 005.Feature preprocessing and generation with respect to models/009. Overview.mp4 26.9 MB
- 017.Ensembling/058. Ensembling Tips and Tricks.mp4 26.8 MB
- 012.Metrics optimization/039. Classification metrics optimization II.mp4 26.5 MB
- 014.Hyperparameter tuning/043. Hyperparameter tuning I.mp4 26.2 MB
- 002.Competition mechanics/004. Competition Mechanics.mp4 26.1 MB
- 018.Competitions go through/060. Springleaf Marketing Response.mp4 25.4 MB
- 016.Advanced features II/050. Matrix factorizations.mp4 25.3 MB
- 008.Exploratory data analysis/017. Exploratory data analysis.mp4 25.1 MB
- 012.Metrics optimization/036. General approaches for metrics optimization.mp4 24.9 MB
- 008.Exploratory data analysis/018. Building intuition about the data.mp4 23.4 MB
- 011.Data leakages/029. Basic data leaks.mp4 23.2 MB
- 009.EDA examples/024. Numerai competition EDA.mp4 23.0 MB
- 016.Advanced features II/052. t-SNE.mp4 22.6 MB
- 004.Software Hardware requirements/008. Software Hardware Requirements.mp4 22.6 MB
- 016.Advanced features II/049. Statistics and distance based features.mp4 22.0 MB
- 016.Advanced features II/051. Feature Interactions.mp4 21.4 MB
- 009.EDA examples/022. Springleaf competition EDA I.mp4 21.1 MB
- 002.Competition mechanics/006. Real World Application vs Competitions.mp4 21.0 MB
- 007.Final project/016. Final project overview.mp4 18.7 MB
- 017.Ensembling/054. Bagging.mp4 16.7 MB
- 001.Welcome to How to win a data science competition/002. Meet your lecturers.mp4 14.5 MB
- 017.Ensembling/053. Introduction into ensemble methods.mp4 11.2 MB
- 001.Welcome to How to win a data science competition/001. Introduction.mp4 10.2 MB
- 010.Validation/028. Problems occurring during validation.srt 26.0 kB
- 018.Competitions go through/063. Acquire Valued Shoppers Challenge, part 1.srt 25.7 kB
- 012.Metrics optimization/035. Classification metrics review.srt 24.8 kB
- 015.Tips and tricks/047. KazAnova's competition pipeline, part 1.srt 24.0 kB
- 018.Competitions go through/061. Microsoft Malware Classification Challenge.srt 23.5 kB
- 015.Tips and tricks/046. Practical guide.srt 22.7 kB
- 018.Competitions go through/064. Acquire Valued Shoppers Challenge, part 2.srt 22.4 kB
- 015.Tips and tricks/048. KazAnova's competition pipeline, part 2.srt 22.1 kB
- 009.EDA examples/023. Springleaf competition EDA II.srt 20.3 kB
- 017.Ensembling/055. Boosting.srt 19.6 kB
- 017.Ensembling/056. Stacking.srt 19.4 kB
- 010.Validation/027. Data splitting strategies.srt 19.1 kB
- 005.Feature preprocessing and generation with respect to models/010. Numeric features.srt 19.0 kB
- 008.Exploratory data analysis/019. Exploring anonymized data.srt 18.6 kB
- 017.Ensembling/057. StackNet.srt 18.5 kB
- 017.Ensembling/058. Ensembling Tips and Tricks.srt 18.4 kB
- 012.Metrics optimization/033. Regression metrics review I.srt 17.9 kB
- 006.Feature extraction from text and images/015. Word2vec, CNN.srt 17.2 kB
- 008.Exploratory data analysis/020. Visualizations.srt 16.5 kB
- 018.Competitions go through/059. Crowdflower Competition.srt 15.8 kB
- 014.Hyperparameter tuning/045. Hyperparameter tuning III.srt 15.5 kB
- 014.Hyperparameter tuning/044. Hyperparameter tuning II.srt 15.5 kB
- 006.Feature extraction from text and images/014. Bag of words.srt 14.0 kB
- 003.Recap of main ML algorithms/007. Recap of main ML algorithms.srt 13.9 kB
- 010.Validation/025. Validation and overfitting.srt 13.6 kB
- 005.Feature preprocessing and generation with respect to models/011. Categorical and ordinal features.srt 13.5 kB
- 005.Feature preprocessing and generation with respect to models/013. Handling missing values.srt 13.1 kB
- 011.Data leakages/030. Leaderboard probing and examples of rare data leaks.srt 12.5 kB
- 013.Mean encodings/042. Extensions and generalizations.srt 12.5 kB
- 012.Metrics optimization/037. Regression metrics optimization.srt 12.4 kB
- 011.Data leakages/031. Expedia challenge.srt 11.7 kB
- 017.Ensembling/054. Bagging.srt 11.3 kB
- 002.Competition mechanics/004. Competition Mechanics.srt 11.2 kB
- 012.Metrics optimization/032. Motivation.srt 10.8 kB
- 005.Feature preprocessing and generation with respect to models/012. Datetime and coordinates.srt 10.5 kB
- 001.Welcome to How to win a data science competition/003. Course overview.srt 10.4 kB
- 018.Competitions go through/062. Walmart Trip Type Classification.srt 10.2 kB
- 013.Mean encodings/040. Concept of mean encoding.srt 10.1 kB
- 008.Exploratory data analysis/017. Exploratory data analysis.srt 9.9 kB
- 008.Exploratory data analysis/021. Dataset cleaning and other things to check.srt 9.8 kB
- 012.Metrics optimization/034. Regression metrics review II.srt 9.8 kB
- 008.Exploratory data analysis/018. Building intuition about the data.srt 9.7 kB
- 002.Competition mechanics/005. Kaggle Overview [screencast].srt 9.4 kB
- 013.Mean encodings/041. Regularization.srt 9.4 kB
- 010.Validation/026. Validation strategies.srt 9.3 kB
- 016.Advanced features II/050. Matrix factorizations.srt 9.2 kB
- 009.EDA examples/022. Springleaf competition EDA I.srt 9.2 kB
- 005.Feature preprocessing and generation with respect to models/009. Overview.srt 9.2 kB
- 012.Metrics optimization/038. Classification metrics optimization I.srt 9.2 kB
- 014.Hyperparameter tuning/043. Hyperparameter tuning I.srt 9.1 kB
- 012.Metrics optimization/039. Classification metrics optimization II.srt 8.9 kB
- 002.Competition mechanics/006. Real World Application vs Competitions.srt 8.9 kB
- 011.Data leakages/029. Basic data leaks.srt 8.3 kB
- 012.Metrics optimization/036. General approaches for metrics optimization.srt 8.2 kB
- 004.Software Hardware requirements/008. Software Hardware Requirements.srt 8.1 kB
- 018.Competitions go through/060. Springleaf Marketing Response.srt 8.1 kB
- 016.Advanced features II/051. Feature Interactions.srt 8.0 kB
- 009.EDA examples/024. Numerai competition EDA.srt 7.9 kB
- 016.Advanced features II/052. t-SNE.srt 7.7 kB
- 017.Ensembling/053. Introduction into ensemble methods.srt 7.2 kB
- 016.Advanced features II/049. Statistics and distance based features.srt 7.0 kB
- 007.Final project/016. Final project overview.srt 5.6 kB
- 001.Welcome to How to win a data science competition/002. Meet your lecturers.srt 3.6 kB
- 001.Welcome to How to win a data science competition/001. Introduction.srt 2.8 kB
- [FTU Forum].url 252 Bytes
- [FreeCoursesOnline.Me].url 133 Bytes
- [FreeTutorials.Us].url 119 Bytes
==查看完整文档列表==