磁力狗
导航切换
首页
最新地址
最新地址
最新地址
最新地址
搜索磁力
BT种子名称
[Coursera] Neural Networks for Machine Learning by Geoffrey Hinton
请保存以下最新地址
clgou.icu
clgougou.cc
clg.dog
clgougou.com
BT种子基本信息
种子哈希:
671da68928377171085caf0a2861d8c559e98f54
文档大小:
980.0 MB
文档个数:
284
个文档
下载次数:
1700
次
下载速度:
极快
收录时间:
2020-03-08
最近下载:
2024-12-15
DMCA/屏蔽:
DMCA/屏蔽
下载磁力链接
magnet:?xt=urn:btih:671DA68928377171085CAF0A2861D8C559E98F54
复制磁力链接到
PikPak
、utorrent、Bitcomet、迅雷、115、百度网盘等下载工具进行下载。
下载BT种子
磁力链接
种子下载
迅雷下载
二维码
YouTube成人版
91视频
91短视频
51品茶
逼哩逼哩
萝莉岛
欲漫涩
草榴社区
含羞草
抖阴破解版
TikTok成人版
成人快手
乱伦社区
91AV
暗网禁地
文档列表
05_Lecture5/04_Convolutional_nets_for_object_recognition_17min.mp4
24.1 MB
07_Lecture7/01_Modeling_sequences-_A_brief_overview.mp4
21.1 MB
14_Lecture14/01_Learning_layers_of_features_by_stacking_RBMs_17_min.mp4
21.0 MB
14_Lecture14/05_OPTIONAL_VIDEO-_RBMs_are_infinite_sigmoid_belief_nets_17_mins.mp4
20.4 MB
05_Lecture5/03_Convolutional_nets_for_digit_recognition_16_min.mp4
19.4 MB
12_Lecture12/02_OPTIONAL_VIDEO-_More_efficient_ways_to_get_the_statistics_15_mins.mp4
17.8 MB
02_Lecture2/05_What_perceptrons_cant_do_15_min.mp4
17.4 MB
08_Lecture8/02_Modeling_character_strings_with_multiplicative_connections_14_mins.mp4
17.4 MB
08_Lecture8/01_A_brief_overview_of_Hessian_Free_optimization.mp4
17.0 MB
16_Lecture16/03_OPTIONAL-_Bayesian_optimization_of_hyper-parameters_13_min.mp4
16.6 MB
13_Lecture13/04_The_wake-sleep_algorithm_13_min.mp4
16.4 MB
10_Lecture10/01_Why_it_helps_to_combine_models_13_min.mp4
15.9 MB
06_Lecture6/05_Rmsprop-_Divide_the_gradient_by_a_running_average_of_its_recent_magnitude.mp4
15.9 MB
01_Lecture1/01_Why_do_we_need_machine_learning_13_min.mp4
15.8 MB
10_Lecture10/02_Mixtures_of_Experts_13_min.mp4
15.7 MB
06_Lecture6/02_A_bag_of_tricks_for_mini-batch_gradient_descent.mp4
15.6 MB
13_Lecture13/02_Belief_Nets_13_min.mp4
15.6 MB
11_Lecture11/01_Hopfield_Nets_13_min.mp4
15.4 MB
04_Lecture4/01_Learning_to_predict_the_next_word_13_min.mp4
15.0 MB
04_Lecture4/05_Ways_to_deal_with_the_large_number_of_possible_outputs_15_min.mp4
14.9 MB
12_Lecture12/01_Boltzmann_machine_learning_12_min.mp4
14.7 MB
08_Lecture8/03_Learning_to_predict_the_next_character_using_HF_12__mins.mp4
14.6 MB
16_Lecture16/01_OPTIONAL-_Learning_a_joint_model_of_images_and_captions_10_min.mp4
14.5 MB
13_Lecture13/03_Learning_sigmoid_belief_nets_12_min.mp4
14.3 MB
09_Lecture9/01_Overview_of_ways_to_improve_generalization_12_min.mp4
14.2 MB
03_Lecture3/01_Learning_the_weights_of_a_linear_neuron_12_min.mp4
14.2 MB
03_Lecture3/04_The_backpropagation_algorithm_12_min.mp4
14.0 MB
11_Lecture11/05_How_a_Boltzmann_machine_models_data_12_min.mp4
13.9 MB
11_Lecture11/02_Dealing_with_spurious_minima_11_min.mp4
13.4 MB
12_Lecture12/03_Restricted_Boltzmann_Machines_11_min.mp4
13.3 MB
09_Lecture9/05_The_Bayesian_interpretation_of_weight_decay_11_min.mp4
12.9 MB
09_Lecture9/04_Introduction_to_the_full_Bayesian_approach_12_min.mp4
12.6 MB
13_Lecture13/01_The_ups_and_downs_of_back_propagation_10_min.mp4
12.4 MB
11_Lecture11/04_Using_stochastic_units_to_improv_search_11_min.mp4
12.3 MB
15_Lecture15/05_Learning_binary_codes_for_image_retrieval_9_mins.mp4
12.1 MB
11_Lecture11/03_Hopfield_nets_with_hidden_units_10_min.mp4
11.9 MB
14_Lecture14/02_Discriminative_learning_for_DBNs_9_mins.mp4
11.8 MB
08_Lecture8/04_Echo_State_Networks_9_min.mp4
11.8 MB
14_Lecture14/04_Modeling_real-valued_data_with_an_RBM_10_mins.mp4
11.7 MB
16_Lecture16/02_OPTIONAL-_Hierarchical_Coordinate_Frames_10_mins.mp4
11.7 MB
03_Lecture3/05_Using_the_derivatives_computed_by_backpropagation_10_min.mp4
11.7 MB
15_Lecture15/03_Deep_auto_encoders_for_document_retrieval_8_mins.mp4
10.7 MB
07_Lecture7/05_Long-term_Short-term-memory.mp4
10.7 MB
14_Lecture14/03_What_happens_during_discriminative_fine-tuning_8_mins.mp4
10.7 MB
15_Lecture15/04_Semantic_Hashing_9_mins.mp4
10.5 MB
01_Lecture1/02_What_are_neural_networks_8_min.mp4
10.2 MB
06_Lecture6/03_The_momentum_method.mp4
10.2 MB
10_Lecture10/05_Dropout_9_min.mp4
10.2 MB
15_Lecture15/01_From_PCA_to_autoencoders_5_mins.mp4
10.2 MB
06_Lecture6/01_Overview_of_mini-batch_gradient_descent.mp4
10.1 MB
12_Lecture12/05_RBMs_for_collaborative_filtering_8_mins.mp4
10.0 MB
02_Lecture2/02_Perceptrons-_The_first_generation_of_neural_networks_8_min.mp4
9.8 MB
01_Lecture1/03_Some_simple_models_of_neurons_8_min.mp4
9.7 MB
01_Lecture1/05_Three_types_of_learning_8_min.mp4
9.4 MB
04_Lecture4/04_Neuro-probabilistic_language_models_8_min.mp4
9.4 MB
07_Lecture7/04_Why_it_is_difficult_to_train_an_RNN.mp4
9.3 MB
02_Lecture2/01_Types_of_neural_network_architectures_7_min.mp4
9.2 MB
12_Lecture12/04_An_example_of_RBM_learning_7_mins.mp4
9.1 MB
09_Lecture9/03_Using_noise_as_a_regularizer_7_min.mp4
8.9 MB
10_Lecture10/03_The_idea_of_full_Bayesian_learning_7_min.mp4
8.8 MB
15_Lecture15/06_Shallow_autoencoders_for_pre-training_7_mins.mp4
8.7 MB
10_Lecture10/04_Making_full_Bayesian_learning_practical_7_min.mp4
8.5 MB
04_Lecture4/03_Another_diversion-_The_softmax_output_function_7_min.mp4
8.4 MB
09_Lecture9/02_Limiting_the_size_of_the_weights_6_min.mp4
7.7 MB
07_Lecture7/02_Training_RNNs_with_back_propagation.mp4
7.7 MB
02_Lecture2/03_A_geometrical_view_of_perceptrons_6_min.mp4
7.7 MB
07_Lecture7/03_A_toy_example_of_training_an_RNN.mp4
7.6 MB
05_Lecture5/02_Achieving_viewpoint_invariance_6_min.mp4
7.2 MB
06_Lecture6/04_Adaptive_learning_rates_for_each_connection.mp4
7.0 MB
01_Lecture1/04_A_simple_example_of_learning_6_min.mp4
6.9 MB
02_Lecture2/04_Why_the_learning_works_5_min.mp4
6.2 MB
03_Lecture3/02_The_error_surface_for_a_linear_neuron_5_min.mp4
6.2 MB
05_Lecture5/01_Why_object_recognition_is_difficult_5_min.mp4
5.6 MB
04_Lecture4/02_A_brief_diversion_into_cognitive_science_4_min.mp4
5.6 MB
15_Lecture15/02_Deep_auto_encoders_4_mins.mp4
5.2 MB
09_Lecture9/06_MacKays_quick_and_dirty_method_of_setting_weight_costs_4_min.mp4
4.6 MB
03_Lecture3/03_Learning_the_weights_of_a_logistic_output_neuron_4_min.mp4
4.6 MB
01_Lecture1/01_Why_do_we_need_machine_learning_13_min.pdf
4.1 MB
01_Lecture1/01_Why_do_we_need_machine_learning_13_min.pptx
3.8 MB
03_Lecture3/04_The_backpropagation_algorithm_12_min.pdf
3.1 MB
16_Lecture16/04_OPTIONAL-_The_fog_of_progress_3_min.mp4
2.9 MB
15_Lecture15/01_From_PCA_to_autoencoders_5_mins.pdf
2.6 MB
13_Lecture13/03_Learning_sigmoid_belief_nets_12_min.pdf
2.4 MB
12_Lecture12/01_Boltzmann_machine_learning_12_min.pptx
2.0 MB
15_Lecture15/01_From_PCA_to_autoencoders_5_mins.pptx
1.9 MB
12_Lecture12/01_Boltzmann_machine_learning_12_min.pdf
1.8 MB
05_Lecture5/01_Why_object_recognition_is_difficult_5_min.pptx
1.7 MB
10_Lecture10/05_Dropout_9_min.pdf
1.7 MB
05_Lecture5/01_Why_object_recognition_is_difficult_5_min.pdf
1.6 MB
09_Lecture9/01_Overview_of_ways_to_improve_generalization_12_min.pptx
1.5 MB
14_Lecture14/01_Learning_layers_of_features_by_stacking_RBMs_17_min.pptx
1.3 MB
03_Lecture3/01_Learning_the_weights_of_a_linear_neuron_12_min.pptx
1.2 MB
14_Lecture14/01_Learning_layers_of_features_by_stacking_RBMs_17_min.pdf
1.2 MB
04_Lecture4/01_Learning_to_predict_the_next_word_13_min.pptx
1.1 MB
07_Lecture7/01_Modeling_sequences-_A_brief_overview.pdf
976.0 kB
04_Lecture4/01_Learning_to_predict_the_next_word_13_min.pdf
964.1 kB
05_Lecture5/04_Convolutional_nets_for_object_recognition_17min_0_.pdf
955.1 kB
10_Lecture10/01_Why_it_helps_to_combine_models_13_min.pptx
901.6 kB
10_Lecture10/01_Why_it_helps_to_combine_models_13_min.pdf
847.1 kB
14_Lecture14/01_Learning_layers_of_features_by_stacking_RBMs_17_min_2_.pdf
787.8 kB
15_Lecture15/05_Learning_binary_codes_for_image_retrieval_9_mins.pdf
759.2 kB
11_Lecture11/01_Hopfield_Nets_13_min.pptx
743.8 kB
09_Lecture9/01_Overview_of_ways_to_improve_generalization_12_min.pdf
719.0 kB
11_Lecture11/01_Hopfield_Nets_13_min.pdf
711.2 kB
06_Lecture6/01_Overview_of_mini-batch_gradient_descent.pptx
672.6 kB
08_Lecture8/01_A_brief_overview_of_Hessian_Free_optimization.pdf
658.3 kB
15_Lecture15/04_Semantic_Hashing_9_mins.pdf
641.6 kB
08_Lecture8/01_A_brief_overview_of_Hessian_Free_optimization.pptx
568.2 kB
03_Lecture3/01_Learning_the_weights_of_a_linear_neuron_12_min.pdf
548.0 kB
06_Lecture6/01_Overview_of_mini-batch_gradient_descent.pdf
546.8 kB
14_Lecture14/01_Learning_layers_of_features_by_stacking_RBMs_17_min_1_.pdf
513.9 kB
02_Lecture2/01_Types_of_neural_network_architectures_7_min.pdf
504.8 kB
14_Lecture14/01_Learning_layers_of_features_by_stacking_RBMs_17_min_0_Self-taught_learning-_transfer_learning_from_unlabeled_data.pdf
484.9 kB
13_Lecture13/01_The_ups_and_downs_of_back_propagation_10_min.pptx
424.8 kB
02_Lecture2/01_Types_of_neural_network_architectures_7_min.pptx
409.2 kB
16_Lecture16/01_OPTIONAL-_Learning_a_joint_model_of_images_and_captions_10_min.pdf
346.9 kB
16_Lecture16/04_OPTIONAL-_The_fog_of_progress_3_min.pdf
346.9 kB
16_Lecture16/01_OPTIONAL-_Learning_a_joint_model_of_images_and_captions_10_min.pptx
344.3 kB
16_Lecture16/04_OPTIONAL-_The_fog_of_progress_3_min.pptx
344.3 kB
07_Lecture7/05_Long-term_Short-term-memory.pdf
320.6 kB
13_Lecture13/01_The_ups_and_downs_of_back_propagation_10_min.pdf
314.6 kB
08_Lecture8/03_Learning_to_predict_the_next_character_using_HF_12__mins.pdf
273.4 kB
10_Lecture10/02_Mixtures_of_Experts_13_min.pdf
271.1 kB
13_Lecture13/04_The_wake-sleep_algorithm_13_min.pdf
261.5 kB
07_Lecture7/01_Modeling_sequences-_A_brief_overview.pptx
228.0 kB
04_Lecture4/05_Ways_to_deal_with_the_large_number_of_possible_outputs_15_min.png
154.4 kB
04_Lecture4/04_Neuro-probabilistic_language_models_8_min.pdf
140.1 kB
05_Lecture5/04_Convolutional_nets_for_object_recognition_17min.pdf
125.4 kB
05_Lecture5/04_Convolutional_nets_for_object_recognition_17min.srt
26.2 kB
14_Lecture14/01_Learning_layers_of_features_by_stacking_RBMs_17_min.srt
23.4 kB
07_Lecture7/01_Modeling_sequences-_A_brief_overview.srt
23.2 kB
14_Lecture14/05_OPTIONAL_VIDEO-_RBMs_are_infinite_sigmoid_belief_nets_17_mins.srt
22.2 kB
05_Lecture5/03_Convolutional_nets_for_digit_recognition_16_min.srt
22.1 kB
06_Lecture6/02_A_bag_of_tricks_for_mini-batch_gradient_descent.srt
19.2 kB
16_Lecture16/03_OPTIONAL-_Bayesian_optimization_of_hyper-parameters_13_min.srt
19.0 kB
02_Lecture2/05_What_perceptrons_cant_do_15_min.srt
18.9 kB
01_Lecture1/01_Why_do_we_need_machine_learning_13_min.srt
18.8 kB
12_Lecture12/02_OPTIONAL_VIDEO-_More_efficient_ways_to_get_the_statistics_15_mins.srt
18.6 kB
04_Lecture4/05_Ways_to_deal_with_the_large_number_of_possible_outputs_15_min.srt
18.6 kB
08_Lecture8/01_A_brief_overview_of_Hessian_Free_optimization.srt
18.4 kB
10_Lecture10/01_Why_it_helps_to_combine_models_13_min.srt
18.1 kB
08_Lecture8/02_Modeling_character_strings_with_multiplicative_connections_14_mins.srt
17.9 kB
13_Lecture13/04_The_wake-sleep_algorithm_13_min.srt
17.8 kB
13_Lecture13/02_Belief_Nets_13_min.srt
17.8 kB
10_Lecture10/02_Mixtures_of_Experts_13_min.srt
17.5 kB
05_Lecture5/04_Convolutional_nets_for_object_recognition_17min.txt
17.0 kB
04_Lecture4/01_Learning_to_predict_the_next_word_13_min.srt
16.9 kB
11_Lecture11/01_Hopfield_Nets_13_min.srt
16.8 kB
12_Lecture12/01_Boltzmann_machine_learning_12_min.srt
16.4 kB
11_Lecture11/05_How_a_Boltzmann_machine_models_data_12_min.srt
16.3 kB
09_Lecture9/01_Overview_of_ways_to_improve_generalization_12_min.srt
16.2 kB
08_Lecture8/03_Learning_to_predict_the_next_character_using_HF_12__mins.srt
16.1 kB
06_Lecture6/05_Rmsprop-_Divide_the_gradient_by_a_running_average_of_its_recent_magnitude.srt
16.1 kB
14_Lecture14/01_Learning_layers_of_features_by_stacking_RBMs_17_min.txt
15.6 kB
03_Lecture3/01_Learning_the_weights_of_a_linear_neuron_12_min.srt
15.4 kB
03_Lecture3/04_The_backpropagation_algorithm_12_min.srt
15.2 kB
11_Lecture11/02_Dealing_with_spurious_minima_11_min.srt
15.2 kB
07_Lecture7/01_Modeling_sequences-_A_brief_overview.txt
15.1 kB
13_Lecture13/03_Learning_sigmoid_belief_nets_12_min.srt
15.0 kB
14_Lecture14/05_OPTIONAL_VIDEO-_RBMs_are_infinite_sigmoid_belief_nets_17_mins.txt
14.7 kB
11_Lecture11/04_Using_stochastic_units_to_improv_search_11_min.srt
14.3 kB
05_Lecture5/03_Convolutional_nets_for_digit_recognition_16_min.txt
14.2 kB
13_Lecture13/01_The_ups_and_downs_of_back_propagation_10_min.srt
14.0 kB
12_Lecture12/03_Restricted_Boltzmann_Machines_11_min.srt
13.9 kB
03_Lecture3/05_Using_the_derivatives_computed_by_backpropagation_10_min.srt
13.9 kB
16_Lecture16/02_OPTIONAL-_Hierarchical_Coordinate_Frames_10_mins.srt
13.7 kB
09_Lecture9/04_Introduction_to_the_full_Bayesian_approach_12_min.srt
13.5 kB
09_Lecture9/05_The_Bayesian_interpretation_of_weight_decay_11_min.srt
13.3 kB
15_Lecture15/05_Learning_binary_codes_for_image_retrieval_9_mins.srt
13.2 kB
14_Lecture14/02_Discriminative_learning_for_DBNs_9_mins.srt
13.0 kB
16_Lecture16/03_OPTIONAL-_Bayesian_optimization_of_hyper-parameters_13_min.txt
12.7 kB
11_Lecture11/03_Hopfield_nets_with_hidden_units_10_min.srt
12.6 kB
06_Lecture6/02_A_bag_of_tricks_for_mini-batch_gradient_descent.txt
12.5 kB
14_Lecture14/04_Modeling_real-valued_data_with_an_RBM_10_mins.srt
12.4 kB
02_Lecture2/05_What_perceptrons_cant_do_15_min.txt
12.4 kB
08_Lecture8/04_Echo_State_Networks_9_min.srt
12.3 kB
06_Lecture6/01_Overview_of_mini-batch_gradient_descent.srt
12.2 kB
12_Lecture12/02_OPTIONAL_VIDEO-_More_efficient_ways_to_get_the_statistics_15_mins.txt
12.2 kB
01_Lecture1/01_Why_do_we_need_machine_learning_13_min.txt
12.2 kB
04_Lecture4/05_Ways_to_deal_with_the_large_number_of_possible_outputs_15_min.txt
12.0 kB
10_Lecture10/05_Dropout_9_min.srt
12.0 kB
08_Lecture8/01_A_brief_overview_of_Hessian_Free_optimization.txt
11.9 kB
07_Lecture7/05_Long-term_Short-term-memory.srt
11.9 kB
08_Lecture8/02_Modeling_character_strings_with_multiplicative_connections_14_mins.txt
11.8 kB
01_Lecture1/02_What_are_neural_networks_8_min.srt
11.8 kB
10_Lecture10/01_Why_it_helps_to_combine_models_13_min.txt
11.8 kB
15_Lecture15/04_Semantic_Hashing_9_mins.srt
11.6 kB
13_Lecture13/02_Belief_Nets_13_min.txt
11.5 kB
13_Lecture13/04_The_wake-sleep_algorithm_13_min.txt
11.5 kB
10_Lecture10/02_Mixtures_of_Experts_13_min.txt
11.4 kB
06_Lecture6/03_The_momentum_method.srt
11.4 kB
02_Lecture2/02_Perceptrons-_The_first_generation_of_neural_networks_8_min.srt
11.1 kB
04_Lecture4/01_Learning_to_predict_the_next_word_13_min.txt
11.1 kB
04_Lecture4/04_Neuro-probabilistic_language_models_8_min.srt
11.0 kB
01_Lecture1/03_Some_simple_models_of_neurons_8_min.srt
11.0 kB
12_Lecture12/05_RBMs_for_collaborative_filtering_8_mins.srt
10.9 kB
14_Lecture14/03_What_happens_during_discriminative_fine-tuning_8_mins.srt
10.9 kB
11_Lecture11/01_Hopfield_Nets_13_min.txt
10.9 kB
15_Lecture15/03_Deep_auto_encoders_for_document_retrieval_8_mins.srt
10.8 kB
12_Lecture12/01_Boltzmann_machine_learning_12_min.txt
10.7 kB
01_Lecture1/05_Three_types_of_learning_8_min.srt
10.6 kB
09_Lecture9/01_Overview_of_ways_to_improve_generalization_12_min.txt
10.6 kB
16_Lecture16/01_OPTIONAL-_Learning_a_joint_model_of_images_and_captions_10_min.srt
10.6 kB
11_Lecture11/05_How_a_Boltzmann_machine_models_data_12_min.txt
10.5 kB
10_Lecture10/03_The_idea_of_full_Bayesian_learning_7_min.srt
10.5 kB
15_Lecture15/01_From_PCA_to_autoencoders_5_mins.srt
10.5 kB
06_Lecture6/05_Rmsprop-_Divide_the_gradient_by_a_running_average_of_its_recent_magnitude.txt
10.5 kB
08_Lecture8/03_Learning_to_predict_the_next_character_using_HF_12__mins.txt
10.4 kB
15_Lecture15/06_Shallow_autoencoders_for_pre-training_7_mins.srt
10.3 kB
03_Lecture3/01_Learning_the_weights_of_a_linear_neuron_12_min.txt
10.1 kB
12_Lecture12/04_An_example_of_RBM_learning_7_mins.srt
10.1 kB
02_Lecture2/01_Types_of_neural_network_architectures_7_min.srt
10.1 kB
07_Lecture7/04_Why_it_is_difficult_to_train_an_RNN.srt
10.0 kB
11_Lecture11/02_Dealing_with_spurious_minima_11_min.txt
10.0 kB
03_Lecture3/04_The_backpropagation_algorithm_12_min.txt
10.0 kB
13_Lecture13/03_Learning_sigmoid_belief_nets_12_min.txt
9.8 kB
11_Lecture11/04_Using_stochastic_units_to_improv_search_11_min.txt
9.3 kB
04_Lecture4/03_Another_diversion-_The_softmax_output_function_7_min.srt
9.3 kB
16_Lecture16/02_OPTIONAL-_Hierarchical_Coordinate_Frames_10_mins.txt
9.2 kB
03_Lecture3/05_Using_the_derivatives_computed_by_backpropagation_10_min.txt
9.1 kB
12_Lecture12/03_Restricted_Boltzmann_Machines_11_min.txt
9.1 kB
09_Lecture9/03_Using_noise_as_a_regularizer_7_min.srt
9.1 kB
13_Lecture13/01_The_ups_and_downs_of_back_propagation_10_min.txt
9.1 kB
15_Lecture15/05_Learning_binary_codes_for_image_retrieval_9_mins.txt
8.9 kB
09_Lecture9/05_The_Bayesian_interpretation_of_weight_decay_11_min.txt
8.8 kB
09_Lecture9/04_Introduction_to_the_full_Bayesian_approach_12_min.txt
8.8 kB
14_Lecture14/02_Discriminative_learning_for_DBNs_9_mins.txt
8.7 kB
10_Lecture10/04_Making_full_Bayesian_learning_practical_7_min.srt
8.7 kB
09_Lecture9/02_Limiting_the_size_of_the_weights_6_min.srt
8.6 kB
07_Lecture7/02_Training_RNNs_with_back_propagation.srt
8.6 kB
02_Lecture2/03_A_geometrical_view_of_perceptrons_6_min.srt
8.5 kB
14_Lecture14/04_Modeling_real-valued_data_with_an_RBM_10_mins.txt
8.3 kB
05_Lecture5/02_Achieving_viewpoint_invariance_6_min.srt
8.3 kB
11_Lecture11/03_Hopfield_nets_with_hidden_units_10_min.txt
8.3 kB
08_Lecture8/04_Echo_State_Networks_9_min.txt
8.0 kB
06_Lecture6/01_Overview_of_mini-batch_gradient_descent.txt
8.0 kB
06_Lecture6/04_Adaptive_learning_rates_for_each_connection.srt
7.9 kB
07_Lecture7/05_Long-term_Short-term-memory.txt
7.9 kB
15_Lecture15/04_Semantic_Hashing_9_mins.txt
7.8 kB
10_Lecture10/05_Dropout_9_min.txt
7.8 kB
07_Lecture7/03_A_toy_example_of_training_an_RNN.srt
7.7 kB
01_Lecture1/02_What_are_neural_networks_8_min.txt
7.7 kB
06_Lecture6/03_The_momentum_method.txt
7.4 kB
14_Lecture14/03_What_happens_during_discriminative_fine-tuning_8_mins.txt
7.3 kB
02_Lecture2/02_Perceptrons-_The_first_generation_of_neural_networks_8_min.txt
7.3 kB
15_Lecture15/03_Deep_auto_encoders_for_document_retrieval_8_mins.txt
7.2 kB
01_Lecture1/04_A_simple_example_of_learning_6_min.srt
7.2 kB
12_Lecture12/05_RBMs_for_collaborative_filtering_8_mins.txt
7.2 kB
04_Lecture4/04_Neuro-probabilistic_language_models_8_min.txt
7.2 kB
16_Lecture16/01_OPTIONAL-_Learning_a_joint_model_of_images_and_captions_10_min.txt
7.1 kB
01_Lecture1/03_Some_simple_models_of_neurons_8_min.txt
7.1 kB
15_Lecture15/01_From_PCA_to_autoencoders_5_mins.txt
7.0 kB
01_Lecture1/05_Three_types_of_learning_8_min.txt
7.0 kB
15_Lecture15/06_Shallow_autoencoders_for_pre-training_7_mins.txt
7.0 kB
10_Lecture10/03_The_idea_of_full_Bayesian_learning_7_min.txt
6.9 kB
12_Lecture12/04_An_example_of_RBM_learning_7_mins.txt
6.6 kB
02_Lecture2/01_Types_of_neural_network_architectures_7_min.txt
6.6 kB
07_Lecture7/04_Why_it_is_difficult_to_train_an_RNN.txt
6.6 kB
02_Lecture2/04_Why_the_learning_works_5_min.srt
6.6 kB
03_Lecture3/02_The_error_surface_for_a_linear_neuron_5_min.srt
6.5 kB
05_Lecture5/01_Why_object_recognition_is_difficult_5_min.srt
6.3 kB
04_Lecture4/03_Another_diversion-_The_softmax_output_function_7_min.txt
6.1 kB
09_Lecture9/03_Using_noise_as_a_regularizer_7_min.txt
6.0 kB
04_Lecture4/02_A_brief_diversion_into_cognitive_science_4_min.srt
5.9 kB
10_Lecture10/04_Making_full_Bayesian_learning_practical_7_min.txt
5.7 kB
07_Lecture7/02_Training_RNNs_with_back_propagation.txt
5.7 kB
09_Lecture9/02_Limiting_the_size_of_the_weights_6_min.txt
5.6 kB
02_Lecture2/03_A_geometrical_view_of_perceptrons_6_min.txt
5.5 kB
15_Lecture15/02_Deep_auto_encoders_4_mins.srt
5.5 kB
05_Lecture5/02_Achieving_viewpoint_invariance_6_min.txt
5.4 kB
06_Lecture6/04_Adaptive_learning_rates_for_each_connection.txt
5.2 kB
07_Lecture7/03_A_toy_example_of_training_an_RNN.txt
5.0 kB
01_Lecture1/04_A_simple_example_of_learning_6_min.txt
4.8 kB
03_Lecture3/03_Learning_the_weights_of_a_logistic_output_neuron_4_min.srt
4.6 kB
09_Lecture9/06_MacKays_quick_and_dirty_method_of_setting_weight_costs_4_min.srt
4.5 kB
02_Lecture2/04_Why_the_learning_works_5_min.txt
4.3 kB
03_Lecture3/02_The_error_surface_for_a_linear_neuron_5_min.txt
4.2 kB
05_Lecture5/01_Why_object_recognition_is_difficult_5_min.txt
4.1 kB
04_Lecture4/02_A_brief_diversion_into_cognitive_science_4_min.txt
3.8 kB
15_Lecture15/02_Deep_auto_encoders_4_mins.txt
3.7 kB
16_Lecture16/04_OPTIONAL-_The_fog_of_progress_3_min.srt
3.6 kB
03_Lecture3/03_Learning_the_weights_of_a_logistic_output_neuron_4_min.txt
3.0 kB
09_Lecture9/06_MacKays_quick_and_dirty_method_of_setting_weight_costs_4_min.txt
3.0 kB
16_Lecture16/04_OPTIONAL-_The_fog_of_progress_3_min.txt
2.4 kB
==查看完整文档列表==
上一个:
Black.Monday.2019.S01.1080p
37.0 GB
下一个:
[HorribleSubs] Fairy Tail - 15 [720p].mkv
297.7 MB
猜你喜欢
Neural Code 2009 - Neural Code
305.6 MB
K.D. Robertson - 2022 - Neural Wraith - Neural Wraith,...
442.1 MB
Kandel - Principles of Neural Science4ed(2000).pdf
69.4 MB
Ghost in the Shell - Global Neural Network (2019)...
271.1 MB
Tripacoustic - Neural Impulses (2017)
149.7 MB
[CourseClub.NET] Coursera - Neural Networks and Deep Learning
920.8 MB
[FreeCourseLab.com] Udemy - Deep Learning Convolutional...
1.1 GB
Hands-On Neural Networks From Scratch for Absolute Beginners
1.3 GB
Hitozuma Kasumi-san [UNCEN] 1080 Neural [PROcoders]
1.4 GB
[Tutorialsplanet.NET] Udemy - Deep Learning...
1.1 GB