磁力狗
导航切换
首页
最新地址
最新地址
最新地址
最新地址
搜索磁力
BT种子名称
Linkedin Learning - Machine Learning and AI Foundations ; Decision Trees with KNIME [Keith McCormick] [En.Sub.]
请保存以下最新地址
clgou.icu
clgougou.cyou
clg.dog
磁力.dog
BT种子基本信息
种子哈希:
66e3b209dbba769d59f4d636f8b7be1b2674137e
文档大小:
326.2 MB
文档个数:
78
个文档
下载次数:
75
次
下载速度:
极快
收录时间:
2022-10-27
最近下载:
2024-11-03
DMCA/屏蔽:
DMCA/屏蔽
下载磁力链接
magnet:?xt=urn:btih:66E3B209DBBA769D59F4D636F8B7BE1B2674137E
复制磁力链接到
PikPak
、utorrent、Bitcomet、迅雷、115、百度网盘等下载工具进行下载。
下载BT种子
磁力链接
种子下载
迅雷下载
二维码
YouTube成人版
91视频
91短视频
51品茶
逼哩逼哩
暗网禁区
欲漫涩
草榴社区
含羞草
抖阴破解版
TikTok成人版
成人快手
乱伦社区
91AV
暗网禁地
文档列表
02 - 1. Introducing Decision Trees/04 - A quick review of machine learning basics with examples.mp4
21.3 MB
03 - 2. Introducing the C5.0 Algorithm/12 - When to turn off pruning.mp4
17.2 MB
03 - 2. Introducing the C5.0 Algorithm/05 - Working with the prebuilt example.mp4
16.7 MB
02 - 1. Introducing Decision Trees/03 - Introducing KNIME.mp4
13.4 MB
02 - 1. Introducing Decision Trees/05 - An overview of decision tree algorithms.mp4
13.1 MB
05 - 4. Introducing Regression Trees/02 - The regression tree prebuilt example.mp4
12.6 MB
03 - 2. Introducing the C5.0 Algorithm/02 - Understanding the entropy calculation.mp4
12.3 MB
04 - 3. Introducing Classification Trees/01 - Introducing Leo Breiman and CART.mp4
12.2 MB
05 - 4. Introducing Regression Trees/04 - How RT handles nominal variables.mp4
11.6 MB
05 - 4. Introducing Regression Trees/05 - Ordinal variable handling.mp4
10.6 MB
02 - 1. Introducing Decision Trees/02 - The pros and cons of decision trees.mp4
10.5 MB
04 - 3. Introducing Classification Trees/03 - How CART handles missing data using surrogates.mp4
10.2 MB
03 - 2. Introducing the C5.0 Algorithm/11 - Evaluating the accuracy of your C4.5 tree.mp4
9.7 MB
05 - 4. Introducing Regression Trees/06 - Closer look at a full regression tree.mp4
9.5 MB
03 - 2. Introducing the C5.0 Algorithm/06 - KNIME settings for C4.5.mp4
9.0 MB
03 - 2. Introducing the C5.0 Algorithm/04 - The Give Me Some Credit data set.mp4
8.3 MB
05 - 4. Introducing Regression Trees/08 - Line plot.mp4
8.3 MB
04 - 3. Introducing Classification Trees/04 - Changing the settings in KNIME.mp4
8.2 MB
05 - 4. Introducing Regression Trees/07 - KNIME's missing data options for regression trees.mp4
8.0 MB
03 - 2. Introducing the C5.0 Algorithm/07 - How C4.5 handles nominal variables.mp4
7.8 MB
02 - 1. Introducing Decision Trees/01 - What is a decision tree.mp4
7.5 MB
01 - Introduction/01 - The basics of decision trees.mp4
7.5 MB
04 - 3. Introducing Classification Trees/06 - A quick look at the complete CART tree.mp4
7.5 MB
04 - 3. Introducing Classification Trees/02 - What is the Gini coefficient.mp4
7.3 MB
05 - 4. Introducing Regression Trees/09 - Accuracy.mp4
6.9 MB
03 - 2. Introducing the C5.0 Algorithm/10 - A quick look at the complete C4.5 tree.mp4
6.8 MB
03 - 2. Introducing the C5.0 Algorithm/09 - Equal size sampling.mp4
6.7 MB
03 - 2. Introducing the C5.0 Algorithm/03 - How C4.5 handles missing data.mp4
6.3 MB
03 - 2. Introducing the C5.0 Algorithm/01 - Ross Quinlan, ID3, C4.5, and C5.0.mp4
6.0 MB
04 - 3. Introducing Classification Trees/05 - How CART handles nominal variables.mp4
4.8 MB
01 - Introduction/03 - How to use the practice files.mp4
4.7 MB
05 - 4. Introducing Regression Trees/01 - MPG data set.mp4
4.7 MB
03 - 2. Introducing the C5.0 Algorithm/08 - How C4.5 handles continuous variables.mp4
4.4 MB
05 - 4. Introducing Regression Trees/03 - The math behind regression trees.mp4
4.2 MB
04 - 3. Introducing Classification Trees/07 - Evaluating the accuracy of your CART tree.mp4
3.6 MB
01 - Introduction/02 - What you should know.mp4
2.1 MB
06 - Conclusion/01 - Next steps.mp4
1.8 MB
Ex_Files_ML_and_AI_Foundations_Decision_Trees_KNIME/Exercise Files/Chapter_2_Example_for_Learning_a_Decision_Tree.knwf
806.1 kB
Ex_Files_ML_and_AI_Foundations_Decision_Trees_KNIME/Exercise Files/Chapter_3_Example_for_Learning_a_Decision_Tree.knwf
806.0 kB
Ex_Files_ML_and_AI_Foundations_Decision_Trees_KNIME/Exercise Files/Chapter_4_Example_for_Learning_a_Decision_Tree.knwf
806.0 kB
cover.jpg
54.2 kB
02 - 1. Introducing Decision Trees/04 - A quick review of machine learning basics with examples.srt
10.6 kB
03 - 2. Introducing the C5.0 Algorithm/02 - Understanding the entropy calculation.srt
9.4 kB
03 - 2. Introducing the C5.0 Algorithm/05 - Working with the prebuilt example.srt
9.0 kB
03 - 2. Introducing the C5.0 Algorithm/12 - When to turn off pruning.srt
8.8 kB
02 - 1. Introducing Decision Trees/02 - The pros and cons of decision trees.srt
8.3 kB
04 - 3. Introducing Classification Trees/03 - How CART handles missing data using surrogates.srt
8.2 kB
05 - 4. Introducing Regression Trees/04 - How RT handles nominal variables.srt
6.6 kB
05 - 4. Introducing Regression Trees/02 - The regression tree prebuilt example.srt
6.5 kB
02 - 1. Introducing Decision Trees/03 - Introducing KNIME.srt
6.2 kB
04 - 3. Introducing Classification Trees/01 - Introducing Leo Breiman and CART.srt
6.1 kB
02 - 1. Introducing Decision Trees/05 - An overview of decision tree algorithms.srt
5.9 kB
05 - 4. Introducing Regression Trees/05 - Ordinal variable handling.srt
5.6 kB
05 - 4. Introducing Regression Trees/06 - Closer look at a full regression tree.srt
5.4 kB
02 - 1. Introducing Decision Trees/01 - What is a decision tree.srt
5.1 kB
03 - 2. Introducing the C5.0 Algorithm/06 - KNIME settings for C4.5.srt
5.0 kB
03 - 2. Introducing the C5.0 Algorithm/04 - The Give Me Some Credit data set.srt
4.7 kB
04 - 3. Introducing Classification Trees/04 - Changing the settings in KNIME.srt
4.6 kB
05 - 4. Introducing Regression Trees/07 - KNIME's missing data options for regression trees.srt
4.6 kB
03 - 2. Introducing the C5.0 Algorithm/03 - How C4.5 handles missing data.srt
4.5 kB
03 - 2. Introducing the C5.0 Algorithm/11 - Evaluating the accuracy of your C4.5 tree.srt
4.5 kB
03 - 2. Introducing the C5.0 Algorithm/10 - A quick look at the complete C4.5 tree.srt
4.4 kB
04 - 3. Introducing Classification Trees/02 - What is the Gini coefficient.srt
4.1 kB
05 - 4. Introducing Regression Trees/08 - Line plot.srt
3.9 kB
03 - 2. Introducing the C5.0 Algorithm/07 - How C4.5 handles nominal variables.srt
3.7 kB
04 - 3. Introducing Classification Trees/06 - A quick look at the complete CART tree.srt
3.7 kB
03 - 2. Introducing the C5.0 Algorithm/01 - Ross Quinlan, ID3, C4.5, and C5.0.srt
3.7 kB
05 - 4. Introducing Regression Trees/03 - The math behind regression trees.srt
3.7 kB
05 - 4. Introducing Regression Trees/09 - Accuracy.srt
3.7 kB
03 - 2. Introducing the C5.0 Algorithm/09 - Equal size sampling.srt
3.4 kB
04 - 3. Introducing Classification Trees/05 - How CART handles nominal variables.srt
2.7 kB
03 - 2. Introducing the C5.0 Algorithm/08 - How C4.5 handles continuous variables.srt
2.4 kB
01 - Introduction/03 - How to use the practice files.srt
2.3 kB
01 - Introduction/01 - The basics of decision trees.srt
2.2 kB
04 - 3. Introducing Classification Trees/07 - Evaluating the accuracy of your CART tree.srt
2.1 kB
05 - 4. Introducing Regression Trees/01 - MPG data set.srt
2.0 kB
06 - Conclusion/01 - Next steps.srt
1.7 kB
01 - Introduction/02 - What you should know.srt
1.6 kB
==查看完整文档列表==
上一个:
天津含苞娇娃
109.8 MB
下一个:
[Patreon] Punopupupu.zip
165.3 MB
猜你喜欢
[ FreeCourseWeb.com ] Hands-On Machine Learning with C +...
101.7 MB
[FreeCourseSite.com] Udemy - Machine Learning, Deep...
5.9 GB
[GigaCourse.Com] Udemy - Machine Learning, Deep Learning...
5.9 GB
[Tutorialsplanet.NET] Udemy - Machine Learning, Deep...
5.9 GB
[ DevCourseWeb.com ] Machine Learning with PyTorch and...
484.0 MB
Machine Learning, Deep Learning and Bayesian Learning
6.0 GB
Udemy - Machine Learning, Deep Learning and Bayesian Learning
5.9 GB
[FreeCourseSite.com] Udemy - Machine Learning Deep...
5.9 GB
[ FreeCourseWeb.com ] Udemy - Data Science, Machine...
4.5 GB
Linkedin.Learning.Deep.Learning.Image.Recognition-ZH
322.5 MB