磁力狗
导航切换
首页
最新地址
最新地址
最新地址
最新地址
搜索磁力
BT种子名称
pgm
请保存以下最新地址
clgou.icu
clgougou.cc
clg.dog
clgougou.com
BT种子基本信息
种子哈希:
5648d60c0afcfd91c0987ec1891949d63f645dc6
文档大小:
1.5 GB
文档个数:
186
个文档
下载次数:
3760
次
下载速度:
极快
收录时间:
2020-02-03
最近下载:
2025-01-20
DMCA/屏蔽:
DMCA/屏蔽
下载磁力链接
magnet:?xt=urn:btih:5648D60C0AFCFD91C0987EC1891949D63F645DC6
复制磁力链接到
PikPak
、utorrent、Bitcomet、迅雷、115、百度网盘等下载工具进行下载。
下载BT种子
磁力链接
种子下载
迅雷下载
二维码
YouTube成人版
91视频
91短视频
51品茶
逼哩逼哩
萝莉岛
欲漫涩
草榴社区
含羞草
抖阴破解版
TikTok成人版
成人快手
乱伦社区
91AV
暗网禁地
文档列表
19 - 1 - Maximum Likelihood for Log-Linear Models (28-47).mp4
36.3 MB
23 - 1 - Class Summary (24-38).mp4
33.8 MB
15 - 1 - Maximum Expected Utility (25-57).mp4
30.4 MB
20 - 6 - Learning General Graphs- Heuristic Search (23-36).mp4
28.1 MB
21 - 5 - Latent Variables (22-00).mp4
28.0 MB
3 - 2 - Temporal Models - DBNs (23-02).mp4
27.3 MB
6 - 6 - Log-Linear Models (22-08).mp4
27.0 MB
22 - 1 - Summary- Learning (20-11).mp4
26.9 MB
6 - 3 - Conditional Random Fields (22-22).mp4
26.3 MB
21 - 1 - Learning With Incomplete Data - Overview (21-34).mp4
26.1 MB
7 - 1 - Knowledge Engineering (23-05).mp4
25.9 MB
1 - 2 - Overview and Motivation (19-17).mp4
24.1 MB
20 - 4 - Bayesian Scores (20-35).mp4
23.7 MB
3 - 4 - Plate Models (20-08).mp4
23.6 MB
6 - 5 - I-maps and perfect maps (20-59).mp4
23.5 MB
2 - 5 - Independencies in Bayesian Networks (18-18).mp4
22.6 MB
18 - 5 - Bayesian Estimation for Bayesian Networks (17-02).mp4
22.2 MB
4 - 2 - Moving Data Around (16-07).mp4
21.8 MB
15 - 2 - Utility Functions (18-15).mp4
20.6 MB
2 - 1 - Semantics & Factorization (17-20).mp4
20.5 MB
15 - 3 - Value of Perfect Information (17-14).mp4
20.2 MB
6 - 2 - General Gibbs Distribution (15-52).mp4
19.9 MB
20 - 2 - Likelihood Scores (16-49).mp4
19.6 MB
18 - 3 - Bayesian Estimation (15-27).mp4
19.6 MB
21 - 2 - Expectation Maximization - Intro (16-17).mp4
18.9 MB
18 - 2 - Maximum Likelihood Estimation for Bayesian Networks (15-49).mp4
18.6 MB
4 - 1 - Basic Operations (13-59).mp4
18.6 MB
20 - 7 - Learning General Graphs- Search and Decomposability (15-46).mp4
18.5 MB
17 - 1 - Learning- Overview (15-35).mp4
18.4 MB
13 - 5 - Metropolis Hastings Algorithm (27-06).mp4
17.7 MB
4 - 5 - Control Statements- for, while, if statements (12-55).mp4
17.3 MB
18 - 4 - Bayesian Prediction (13-40).mp4
17.0 MB
4 - 6 - Vectorization (13-48).mp4
16.9 MB
5 - 2 - Tree-Structured CPDs (14-37).mp4
16.8 MB
5 - 3 - Independence of Causal Influence (13-08).mp4
16.6 MB
2 - 4 - Conditional Independence (12-38).mp4
16.3 MB
2 - 3 - Flow of Probabilistic Influence (14-36).mp4
16.2 MB
5 - 4 - Continuous Variables (13-25).mp4
16.1 MB
4 - 3 - Computing On Data (13-15).mp4
16.0 MB
18 - 1 - Maximum Likelihood Estimation (14-59).mp4
15.9 MB
19 - 2 - Maximum Likelihood for Conditional Random Fields (13-24).mp4
15.8 MB
20 - 5 - Learning Tree Structured Networks (12-05).mp4
15.2 MB
16 - 4 - Model Selection and Train Validation Test Sets (12-03).mp4
14.8 MB
13 - 1 - Simple Sampling (23-37).mp4
14.4 MB
3 - 3 - Temporal Models - HMMs (12-01).mp4
14.2 MB
14 - 1 - Inference in Temporal Models (19-43).mp4
14.2 MB
4 - 4 - Plotting Data (09-38).mp4
14.0 MB
9 - 1 - Belief Propagation (21-21).mp4
13.9 MB
10 - 7 - Loopy BP and Message Decoding (21-42).mp4
13.8 MB
21 - 3 - Analysis of EM Algorithm (11-32).mp4
13.5 MB
2 - 8 - Knowledge Engineering Example - SAMIAM (14-14).mp4
13.4 MB
21 - 4 - EM in Practice (11-17).mp4
13.3 MB
11 - 1 - Max Sum Message Passing (20-27).mp4
13.3 MB
16 - 6 - Regularization and Bias Variance (11-20).mp4
13.2 MB
6 - 1 - Pairwise Markov Networks (10-59).mp4
13.2 MB
20 - 3 - BIC and Asymptotic Consistency (11-26).mp4
13.1 MB
13 - 4 - Gibbs Sampling (19-26).mp4
13.1 MB
16 - 2 - Regularization- Cost Function (10-10).mp4
12.2 MB
3 - 1 - Overview of Template Models (10-55).mp4
12.1 MB
2 - 7 - Application - Medical Diagnosis (09-19).mp4
12.1 MB
19 - 3 - MAP Estimation for MRFs and CRFs (9-59).mp4
11.8 MB
12 - 2 - Dual Decomposition - Intuition (17-46).mp4
11.7 MB
16 - 1 - Regularization- The Problem of Overfitting (09-42).mp4
11.7 MB
8 - 3 - Variable Elimination Algorithm (16-17).mp4
11.6 MB
2 - 2 - Reasoning Patterns (09-59).mp4
11.3 MB
2 - 6 - Naive Bayes (09-52).mp4
11.2 MB
10 - 5 - Clique Trees and VE (16-17).mp4
11.1 MB
10 - 2 - Clique Tree Algorithm - Correctness (18-23).mp4
11.0 MB
6 - 7 - Shared Features in Log-Linear Models (08-28).mp4
10.5 MB
12 - 3 - Dual Decomposition - Algorithm (16-16).mp4
10.2 MB
9 - 2 - Properties of Cluster Graphs (15-00).mp4
10.2 MB
12 - 1 - Tractable MAP Problems (15-04).mp4
10.2 MB
5 - 1 - Overview- Structured CPDs (08-00).mp4
10.1 MB
8 - 5 - Graph-Based Perspective on Variable Elimination (15-25).mp4
10.0 MB
13 - 3 - Using a Markov Chain (15-27).mp4
10.0 MB
10 - 4 - Clique Trees and Independence (15-21).mp4
10.0 MB
13 - 2 - Markov Chain Monte Carlo (14-18).mp4
9.7 MB
10 - 6 - BP In Practice (15-38).mp4
9.6 MB
8 - 1 - Overview- Conditional Probability Queries (15-22).mp4
9.5 MB
16 - 5 - Diagnosing Bias vs Variance (07-42).mp4
9.4 MB
8 - 6 - Finding Elimination Orderings (11-58).mp4
9.2 MB
10 - 3 - Clique Tree Algorithm - Computation (16-18).mp4
9.1 MB
8 - 4 - Complexity of Variable Elimination (12-48).mp4
9.0 MB
16 - 3 - Evaluating a Hypothesis (07-35).mp4
8.9 MB
14 - 2 - Inference- Summary (12-45).mp4
8.2 MB
1 - 4 - Factors (06-40).mp4
7.7 MB
1 - 1 - Welcome! (05-35).mp4
7.5 MB
20 - 1 - Structure Learning Overview (5-49).mp4
7.0 MB
8 - 2 - Overview- MAP Inference (09-42).mp4
6.2 MB
6 - 4 - Independencies in Markov Networks (04-48).mp4
6.1 MB
1 - 3 - Distributions (04-56).mp4
6.1 MB
10 - 1 - Properties of Belief Propagation (9-31).mp4
6.0 MB
4 - 7 - Working on and Submitting Programming Exercises (03-33).mp4
5.8 MB
11 - 2 - Finding a MAP Assignment (3-57).mp4
2.8 MB
13 - 5 - Metropolis Hastings Algorithm (27-06).srt
33.2 kB
19 - 1 - Maximum Likelihood for Log-Linear Models (28-47).srt
31.7 kB
20 - 6 - Learning General Graphs- Heuristic Search (23-36).srt
31.0 kB
15 - 1 - Maximum Expected Utility (25-57).srt
30.6 kB
7 - 1 - Knowledge Engineering (23-05).srt
28.9 kB
10 - 7 - Loopy BP and Message Decoding (21-42).srt
27.2 kB
6 - 6 - Log-Linear Models (22-08).srt
27.2 kB
3 - 2 - Temporal Models - DBNs (23-02).srt
27.0 kB
13 - 1 - Simple Sampling (23-37).srt
26.9 kB
21 - 5 - Latent Variables (22-00).srt
25.9 kB
14 - 1 - Inference in Temporal Models (19-43).srt
25.4 kB
1 - 2 - Overview and Motivation (19-17).srt
25.3 kB
21 - 1 - Learning With Incomplete Data - Overview (21-34).srt
25.1 kB
9 - 1 - Belief Propagation (21-21).srt
24.4 kB
20 - 4 - Bayesian Scores (20-35).srt
24.4 kB
6 - 3 - Conditional Random Fields (22-22).srt
24.0 kB
3 - 4 - Plate Models (20-08).srt
23.9 kB
2 - 8 - Knowledge Engineering Example - SAMIAM (14-14).srt
23.6 kB
2 - 5 - Independencies in Bayesian Networks (18-18).srt
23.5 kB
6 - 5 - I-maps and perfect maps (20-59).srt
23.1 kB
11 - 1 - Max Sum Message Passing (20-27).srt
22.8 kB
15 - 3 - Value of Perfect Information (17-14).srt
22.2 kB
2 - 1 - Semantics & Factorization (17-20).srt
21.6 kB
15 - 2 - Utility Functions (18-15).srt
21.5 kB
10 - 2 - Clique Tree Algorithm - Correctness (18-23).srt
20.6 kB
21 - 2 - Expectation Maximization - Intro (16-17).srt
20.5 kB
12 - 2 - Dual Decomposition - Intuition (17-46).srt
20.1 kB
13 - 4 - Gibbs Sampling (19-26).srt
20.0 kB
17 - 1 - Learning- Overview (15-35).srt
19.9 kB
20 - 7 - Learning General Graphs- Search and Decomposability (15-46).srt
19.4 kB
12 - 1 - Tractable MAP Problems (15-04).srt
19.4 kB
18 - 5 - Bayesian Estimation for Bayesian Networks (17-02).srt
19.4 kB
20 - 2 - Likelihood Scores (16-49).srt
19.3 kB
4 - 2 - Moving Data Around (16-07).srt
19.0 kB
12 - 3 - Dual Decomposition - Algorithm (16-16).srt
19.0 kB
13 - 3 - Using a Markov Chain (15-27).srt
18.3 kB
18 - 3 - Bayesian Estimation (15-27).srt
18.2 kB
10 - 5 - Clique Trees and VE (16-17).srt
18.1 kB
8 - 3 - Variable Elimination Algorithm (16-17).srt
17.9 kB
8 - 1 - Overview- Conditional Probability Queries (15-22).srt
17.9 kB
10 - 6 - BP In Practice (15-38).srt
17.7 kB
13 - 2 - Markov Chain Monte Carlo (14-18).srt
17.4 kB
10 - 4 - Clique Trees and Independence (15-21).srt
17.3 kB
5 - 2 - Tree-Structured CPDs (14-37).srt
17.2 kB
18 - 2 - Maximum Likelihood Estimation for Bayesian Networks (15-49).srt
17.1 kB
4 - 6 - Vectorization (13-48).srt
17.1 kB
9 - 2 - Properties of Cluster Graphs (15-00).srt
16.9 kB
4 - 1 - Basic Operations (13-59).srt
16.8 kB
14 - 2 - Inference- Summary (12-45).srt
16.7 kB
6 - 2 - General Gibbs Distribution (15-52).srt
16.7 kB
10 - 3 - Clique Tree Algorithm - Computation (16-18).srt
16.5 kB
16 - 4 - Model Selection and Train Validation Test Sets (12-03).srt
16.4 kB
4 - 3 - Computing On Data (13-15).srt
16.3 kB
19 - 2 - Maximum Likelihood for Conditional Random Fields (13-24).srt
16.1 kB
2 - 3 - Flow of Probabilistic Influence (14-36).srt
15.8 kB
18 - 1 - Maximum Likelihood Estimation (14-59).srt
15.8 kB
21 - 4 - EM in Practice (11-17).srt
15.5 kB
3 - 3 - Temporal Models - HMMs (12-01).srt
15.5 kB
4 - 5 - Control Statements- for, while, if statements (12-55).srt
15.5 kB
18 - 4 - Bayesian Prediction (13-40).srt
15.4 kB
2 - 4 - Conditional Independence (12-38).srt
15.3 kB
16 - 6 - Regularization and Bias Variance (11-20).srt
15.2 kB
8 - 5 - Graph-Based Perspective on Variable Elimination (15-25).srt
15.2 kB
5 - 4 - Continuous Variables (13-25).srt
14.9 kB
8 - 6 - Finding Elimination Orderings (11-58).srt
14.4 kB
20 - 5 - Learning Tree Structured Networks (12-05).srt
14.3 kB
5 - 3 - Independence of Causal Influence (13-08).srt
14.2 kB
20 - 3 - BIC and Asymptotic Consistency (11-26).srt
13.9 kB
6 - 1 - Pairwise Markov Networks (10-59).srt
13.8 kB
16 - 2 - Regularization- Cost Function (10-10).srt
13.6 kB
16 - 1 - Regularization- The Problem of Overfitting (09-42).srt
13.5 kB
21 - 3 - Analysis of EM Algorithm (11-32).srt
13.4 kB
8 - 4 - Complexity of Variable Elimination (12-48).srt
13.2 kB
3 - 1 - Overview of Template Models (10-55).srt
13.0 kB
19 - 3 - MAP Estimation for MRFs and CRFs (9-59).srt
12.7 kB
2 - 7 - Application - Medical Diagnosis (09-19).srt
12.4 kB
2 - 2 - Reasoning Patterns (09-59).srt
12.2 kB
4 - 4 - Plotting Data (09-38).srt
11.5 kB
8 - 2 - Overview- MAP Inference (09-42).srt
11.4 kB
2 - 6 - Naive Bayes (09-52).srt
11.4 kB
10 - 1 - Properties of Belief Propagation (9-31).srt
10.7 kB
16 - 5 - Diagnosing Bias vs Variance (07-42).srt
10.7 kB
1 - 1 - Welcome! (05-35).srt
10.3 kB
5 - 1 - Overview- Structured CPDs (08-00).srt
10.2 kB
16 - 3 - Evaluating a Hypothesis (07-35).srt
9.3 kB
6 - 7 - Shared Features in Log-Linear Models (08-28).srt
9.2 kB
1 - 4 - Factors (06-40).srt
8.7 kB
20 - 1 - Structure Learning Overview (5-49).srt
8.0 kB
1 - 3 - Distributions (04-56).srt
7.1 kB
6 - 4 - Independencies in Markov Networks (04-48).srt
5.5 kB
11 - 2 - Finding a MAP Assignment (3-57).srt
5.2 kB
4 - 7 - Working on and Submitting Programming Exercises (03-33).srt
4.6 kB
==查看完整文档列表==
上一个:
Ep.120 - A Perfect Survival Strategy! The 3rd Universe's Menacing Assassin!! [KaiDubs] [1080p].mkv
1.7 GB
下一个:
[Hi10]_Houseki_no_Kuni_[720p]
2.0 GB
猜你喜欢
Slavi.Show.20.02.2006.TVRip.DivX-PGM
444.0 MB
Slavi.Show.27.02.2006.TVRip.DivX-PGM
424.1 MB
PGM 100320 COM WALFRAN E ALESSANDRO.mp4
3.6 GB
Comment ça va- Jean-Luc Godard.(1978).DVDRip.[PgM].avi
1.2 GB
LTSB.1607.14393.1378.PGM.iso
7.3 GB
SciOlympiad Aftershow 1 (PGM).mov
52.5 GB
[Hagurumarokuro (Silver Radish)] Otokonoko to xx No. 1...
132.6 MB
[Hagurumarokuro (Silver Radish)] Otokonoko to xx No. 1...
132.6 MB
[MKV-3D-HBD]...
5.4 GB
pgm-520
5.3 GB