磁力狗
导航切换
首页
最新地址
最新地址
最新地址
最新地址
搜索磁力
BT种子名称
[ DevCourseWeb.com ] Udemy - Numerical Methods and Optimization in Python
请保存以下最新地址
clgou.icu
clgougou.cc
clg.dog
clgougou.com
BT种子基本信息
种子哈希:
42f3e1283060de23236e319e113f7f6bcf88318d
文档大小:
3.6 GB
文档个数:
357
个文档
下载次数:
3153
次
下载速度:
极快
收录时间:
2022-05-08
最近下载:
2025-02-09
DMCA/屏蔽:
DMCA/屏蔽
下载磁力链接
magnet:?xt=urn:btih:42F3E1283060DE23236E319E113F7F6BCF88318D
复制磁力链接到
PikPak
、utorrent、Bitcomet、迅雷、115、百度网盘等下载工具进行下载。
下载BT种子
磁力链接
种子下载
迅雷下载
二维码
YouTube成人版
91视频
91短视频
51品茶
逼哩逼哩
萝莉岛
欲漫涩
草榴社区
含羞草
抖阴破解版
TikTok成人版
成人快手
乱伦社区
91AV
暗网禁地
文档列表
~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/005 Stochastic gradient descent implementation I.mp4
111.0 MB
~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/008 ADAGrad implementation.mp4
67.1 MB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/017 Sorting.mp4
53.0 MB
~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/002 Gradient descent implementation.mp4
49.9 MB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/016 Sets in Python.mp4
49.4 MB
~Get Your Files Here !/17 - Appendix #2 - Functions/003 Positional arguments and keyword arguments.mp4
48.4 MB
~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/011 ADAM optimizer implementation.mp4
45.1 MB
~Get Your Files Here !/21 - Appendix #6 - Pandas/005 DataFrame operations.mp4
43.3 MB
~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/006 Stochastic gradient descent implementation II.mp4
43.2 MB
~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/013 Comparing objects - overriding functions.mp4
42.1 MB
~Get Your Files Here !/12 - #3 Challenge - Monte-Carlo Integration/002 Monte-Carlo integral implementation I.mp4
41.7 MB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/006 Lists in Python - advanced operations.mp4
41.2 MB
~Get Your Files Here !/09 - Interpolation/001 What is interpolation.mp4
40.6 MB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/015 Dictionaries in Python.mp4
40.4 MB
~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/008 PageRank algorithm - the final formula.mp4
39.6 MB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/001 How to measure the running time of algorithms.mp4
39.1 MB
~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/004 Stochastic gradient descent introduction.mp4
38.2 MB
~Get Your Files Here !/20 - Appendix #5 - NumPy/003 Dimension of arrays.mp4
38.0 MB
~Get Your Files Here !/05 - Gauss Elimination Implementation/001 Gaussian elimination implementation I.mp4
37.4 MB
~Get Your Files Here !/17 - Appendix #2 - Functions/008 What is recursion.mp4
37.0 MB
~Get Your Files Here !/21 - Appendix #6 - Pandas/007 Reading CSV and text files.mp4
36.9 MB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/012 What are linked list data structures.mp4
36.2 MB
~Get Your Files Here !/13 - Differential Equations/004 Euler's method example - pendulum.mp4
35.7 MB
~Get Your Files Here !/20 - Appendix #5 - NumPy/006 Reshape.mp4
35.5 MB
~Get Your Files Here !/20 - Appendix #5 - NumPy/002 Creating and updating arrays.mp4
35.4 MB
~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/003 Using the constructor.mp4
35.2 MB
~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/010 Polymorphism and abstraction example.mp4
34.9 MB
~Get Your Files Here !/21 - Appendix #6 - Pandas/008 Operations.mp4
34.5 MB
~Get Your Files Here !/20 - Appendix #5 - NumPy/004 Indexes and slicing.mp4
33.0 MB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/009 How to use multiple conditions.mp4
32.9 MB
~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/004 Class variables and instance variables.mp4
32.5 MB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/014 Hashing and O(1) running time complexity.mp4
32.5 MB
~Get Your Files Here !/09 - Interpolation/004 Interpolation implementation II.mp4
32.4 MB
~Get Your Files Here !/21 - Appendix #6 - Pandas/010 Using the apply() function.mp4
32.3 MB
~Get Your Files Here !/12 - #3 Challenge - Monte-Carlo Integration/001 What is the Monte-Carlo method.mp4
31.6 MB
~Get Your Files Here !/05 - Gauss Elimination Implementation/002 Gaussian elimination implementation II.mp4
31.0 MB
~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/005 Matrix representation of the problem.mp4
30.5 MB
~Get Your Files Here !/21 - Appendix #6 - Pandas/006 Speed comparison - DataFrame operations.mp4
30.0 MB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/004 Strings.mp4
29.5 MB
~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/001 What is gradient descent.mp4
29.2 MB
~Get Your Files Here !/20 - Appendix #5 - NumPy/007 Stacking and merging arrays.mp4
29.0 MB
~Get Your Files Here !/02 - ### NUMERICAL METHODS ###/004 Speed consideration - C, Java and Python.mp4
28.8 MB
~Get Your Files Here !/21 - Appendix #6 - Pandas/009 Data filtering.mp4
28.4 MB
~Get Your Files Here !/03 - Linear Algebra/003 Running time analysis of matrix multiplication.mp4
28.4 MB
~Get Your Files Here !/21 - Appendix #6 - Pandas/003 Series.mp4
28.2 MB
~Get Your Files Here !/21 - Appendix #6 - Pandas/012 What is vectorization.mp4
27.7 MB
~Get Your Files Here !/09 - Interpolation/003 Interpolation implementation I.mp4
27.4 MB
~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/002 Crawling the web with breadth-first search.mp4
27.1 MB
~Get Your Files Here !/21 - Appendix #6 - Pandas/001 What is Pandas.mp4
26.7 MB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/005 String slicing.mp4
26.3 MB
~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/001 Graph representation of the WWW.mp4
26.3 MB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/003 What are array data structures I.mp4
26.2 MB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/004 What are array data structures II.mp4
26.2 MB
~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/004 PageRank algorithm example.mp4
26.2 MB
~Get Your Files Here !/12 - #3 Challenge - Monte-Carlo Integration/003 Monte-Carlo integral implementation II.mp4
25.7 MB
~Get Your Files Here !/13 - Differential Equations/001 How to deal with differential equations.mp4
25.7 MB
~Get Your Files Here !/13 - Differential Equations/007 Runge-Kutta method example I.mp4
25.7 MB
~Get Your Files Here !/02 - ### NUMERICAL METHODS ###/001 Floating point numbers.mp4
25.7 MB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/013 Doubly linked list implementation in Python.mp4
25.6 MB
~Get Your Files Here !/10 - Root Finding/003 Bisection method implementation.mp4
25.3 MB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/007 Lists in Python - list comprehension.mp4
24.0 MB
~Get Your Files Here !/11 - Numerical Integration/003 Rectangle method implementation.mp4
23.5 MB
~Get Your Files Here !/13 - Differential Equations/008 Runge-Kutta method example II.mp4
23.3 MB
~Get Your Files Here !/21 - Appendix #6 - Pandas/013 Vectorization example I.mp4
23.3 MB
~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/007 What is ADAGrad.mp4
23.2 MB
~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/011 Modules.mp4
22.8 MB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/005 Lists in Python.mp4
22.8 MB
~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/009 Power method.mp4
22.4 MB
~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/007 The super keyword.mp4
22.3 MB
~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/009 What is polymorphism.mp4
22.2 MB
~Get Your Files Here !/21 - Appendix #6 - Pandas/014 Vectorization example II.mp4
21.8 MB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/007 Operators.mp4
21.6 MB
~Get Your Files Here !/03 - Linear Algebra/002 Matrix multiplication implementation.mp4
21.6 MB
~Get Your Files Here !/11 - Numerical Integration/007 Simpson's method implementation.mp4
21.6 MB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/015 Break and continue.mp4
21.4 MB
~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/003 Gradient descent with momentum.mp4
21.0 MB
~Get Your Files Here !/04 - Linear Systems and Gaussian Elimination/003 What is pivoting.mp4
20.7 MB
~Get Your Files Here !/13 - Differential Equations/003 Euler's method example.mp4
20.6 MB
~Get Your Files Here !/03 - Linear Algebra/006 Lists and NumPy arrays.mp4
20.3 MB
~Get Your Files Here !/20 - Appendix #5 - NumPy/005 Types.mp4
20.2 MB
~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/005 Private variables and name mangling.mp4
20.1 MB
~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/009 What is RMSProp.mp4
20.0 MB
~Get Your Files Here !/11 - Numerical Integration/004 Trapezoidal integral introduction.mp4
20.0 MB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/011 Loops - for loop.mp4
19.9 MB
~Get Your Files Here !/17 - Appendix #2 - Functions/002 Defining functions.mp4
19.8 MB
~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/006 The random surfer model.mp4
19.7 MB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/011 Mutability and immutability.mp4
19.4 MB
~Get Your Files Here !/21 - Appendix #6 - Pandas/004 DataFrames.mp4
19.3 MB
~Get Your Files Here !/17 - Appendix #2 - Functions/006 Yield operator.mp4
19.2 MB
~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/008 Function (method) override.mp4
19.1 MB
~Get Your Files Here !/11 - Numerical Integration/002 Rectangle method introduction.mp4
18.9 MB
~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/006 What is inheritance in OOP.mp4
18.9 MB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/008 Conditional statements.mp4
18.7 MB
~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/003 The original formula.mp4
18.6 MB
~Get Your Files Here !/21 - Appendix #6 - Pandas/011 Speed comparison - loops and apply().mp4
18.6 MB
~Get Your Files Here !/11 - Numerical Integration/005 Trapezoidal integral implementation.mp4
18.5 MB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/010 Logical operators.mp4
18.5 MB
~Get Your Files Here !/17 - Appendix #2 - Functions/001 What are functions.mp4
18.1 MB
~Get Your Files Here !/20 - Appendix #5 - NumPy/001 What is the key advantage of NumPy.mp4
18.0 MB
~Get Your Files Here !/04 - Linear Systems and Gaussian Elimination/001 What is Gaussian elimination.mp4
17.6 MB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/006 Type casting.mp4
17.6 MB
~Get Your Files Here !/03 - Linear Algebra/005 Inner product.mp4
17.4 MB
~Get Your Files Here !/10 - Root Finding/004 Newton method introduction.mp4
17.2 MB
~Get Your Files Here !/13 - Differential Equations/005 Euler's method example - pendulum with drag.mp4
16.9 MB
~Get Your Files Here !/10 - Root Finding/005 Newton method implementation.mp4
16.6 MB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/002 What are the basic data types.mp4
16.5 MB
~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/012 The __str__ function.mp4
16.4 MB
~Get Your Files Here !/17 - Appendix #2 - Functions/007 What are the most relevant built-in functions.mp4
16.1 MB
~Get Your Files Here !/20 - Appendix #5 - NumPy/008 Filter.mp4
16.0 MB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/014 Enumerate.mp4
15.9 MB
~Get Your Files Here !/09 - Interpolation/002 Interpolation illustration.mp4
15.8 MB
~Get Your Files Here !/17 - Appendix #2 - Functions/009 Local vs global variables.mp4
15.7 MB
~Get Your Files Here !/17 - Appendix #2 - Functions/010 The __main__ function.mp4
15.5 MB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/010 What are tuples.mp4
15.4 MB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/012 Loops - while loop.mp4
15.1 MB
~Get Your Files Here !/07 - Eigenvalues And Eigenvectors/001 What are eigenvalues and eigenvectors.mp4
15.1 MB
~Get Your Files Here !/12 - #3 Challenge - Monte-Carlo Integration/004 Applications of Monte-Carlo simulations in finance.mp4
15.0 MB
~Get Your Files Here !/13 - Differential Equations/006 Runge-Kutta method introduction.mp4
14.9 MB
~Get Your Files Here !/02 - ### NUMERICAL METHODS ###/003 Rounding errors.mp4
14.8 MB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/002 Data structures introduction.mp4
14.5 MB
~Get Your Files Here !/06 - #1 Challenge - Portfolio Optimization/002 Portfolio optimization implementation.mp4
14.5 MB
~Get Your Files Here !/03 - Linear Algebra/007 Matrix operations with NumPy.mp4
14.3 MB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/001 First steps in Python.mp4
14.3 MB
~Get Your Files Here !/04 - Linear Systems and Gaussian Elimination/002 Gaussian elimination illustration.mp4
14.3 MB
~Get Your Files Here !/01 - Introduction/001 Introduction.mp4
14.3 MB
~Get Your Files Here !/03 - Linear Algebra/004 Matrix vector multiplication.mp4
14.1 MB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/013 What are nested loops.mp4
13.8 MB
~Get Your Files Here !/06 - #1 Challenge - Portfolio Optimization/001 Portfolio optimization introduction.mp4
13.8 MB
~Get Your Files Here !/13 - Differential Equations/002 Euler's method introduction.mp4
13.6 MB
~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/001 What is object oriented programming (OOP).mp4
13.1 MB
~Get Your Files Here !/03 - Linear Algebra/001 Matrix multiplication introduction.mp4
13.1 MB
~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/010 ADAM optimizer introduction.mp4
12.9 MB
~Get Your Files Here !/10 - Root Finding/001 Root of functions introduction.mp4
12.9 MB
~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/007 What are the problems with the random surfer model.mp4
12.9 MB
~Get Your Files Here !/17 - Appendix #2 - Functions/005 Returning multiple values.mp4
12.8 MB
~Get Your Files Here !/11 - Numerical Integration/006 Simpson's method introduction.mp4
12.6 MB
~Get Your Files Here !/11 - Numerical Integration/001 Integration introduction.mp4
11.4 MB
~Get Your Files Here !/07 - Eigenvalues And Eigenvectors/002 Eigenvalues and eigenvectors implementation.mp4
11.4 MB
~Get Your Files Here !/07 - Eigenvalues And Eigenvectors/003 Applications of eigenvectors in machine learning.mp4
11.2 MB
~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/002 Class and objects basics.mp4
11.0 MB
~Get Your Files Here !/21 - Appendix #6 - Pandas/002 First steps.mp4
10.9 MB
~Get Your Files Here !/10 - Root Finding/002 Bisection method introduction.mp4
10.7 MB
~Get Your Files Here !/02 - ### NUMERICAL METHODS ###/002 Precision and accuracy.mp4
9.9 MB
~Get Your Files Here !/04 - Linear Systems and Gaussian Elimination/004 Gaussian elimination and singular matrixes.mp4
9.1 MB
~Get Your Files Here !/09 - Interpolation/005 Applications of interpolation.mp4
9.0 MB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/016 Calculating Fibonacci-numbers.mp4
8.8 MB
~Get Your Files Here !/17 - Appendix #2 - Functions/004 Returning values.mp4
8.5 MB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/003 Booleans.mp4
7.1 MB
~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/numerical_methods.pptx
3.2 MB
~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/house_prices.csv
2.5 MB
~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/005 Stochastic gradient descent implementation I_en.vtt
25.0 kB
~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/008 ADAGrad implementation_en.vtt
14.0 kB
~Get Your Files Here !/13 - Differential Equations/004 Euler's method example - pendulum_en.vtt
13.3 kB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/001 How to measure the running time of algorithms_en.vtt
12.9 kB
~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/004 Stochastic gradient descent introduction_en.vtt
12.1 kB
~Get Your Files Here !/17 - Appendix #2 - Functions/003 Positional arguments and keyword arguments_en.vtt
12.0 kB
~Get Your Files Here !/05 - Gauss Elimination Implementation/001 Gaussian elimination implementation I_en.vtt
11.8 kB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/017 Sorting_en.vtt
11.6 kB
~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/002 Gradient descent implementation_en.vtt
11.6 kB
~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/004 PageRank algorithm example_en.vtt
11.5 kB
~Get Your Files Here !/21 - Appendix #6 - Pandas/005 DataFrame operations_en.vtt
11.1 kB
~Get Your Files Here !/09 - Interpolation/001 What is interpolation_en.vtt
11.1 kB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/015 Dictionaries in Python_en.vtt
10.9 kB
~Get Your Files Here !/20 - Appendix #5 - NumPy/003 Dimension of arrays_en.vtt
10.9 kB
~Get Your Files Here !/17 - Appendix #2 - Functions/008 What is recursion_en.vtt
10.9 kB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/012 What are linked list data structures_en.vtt
10.5 kB
~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/011 ADAM optimizer implementation_en.vtt
10.4 kB
~Get Your Files Here !/13 - Differential Equations/001 How to deal with differential equations_en.vtt
10.0 kB
~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/005 Matrix representation of the problem_en.vtt
10.0 kB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/014 Hashing and O(1) running time complexity_en.vtt
10.0 kB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/016 Sets in Python_en.vtt
9.8 kB
~Get Your Files Here !/12 - #3 Challenge - Monte-Carlo Integration/002 Monte-Carlo integral implementation I_en.vtt
9.7 kB
~Get Your Files Here !/20 - Appendix #5 - NumPy/004 Indexes and slicing_en.vtt
9.6 kB
~Get Your Files Here !/02 - ### NUMERICAL METHODS ###/001 Floating point numbers_en.vtt
9.4 kB
~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/013 Comparing objects - overriding functions_en.vtt
9.3 kB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/009 How to use multiple conditions_en.vtt
9.3 kB
~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/008 PageRank algorithm - the final formula_en.vtt
9.1 kB
~Get Your Files Here !/20 - Appendix #5 - NumPy/006 Reshape_en.vtt
9.1 kB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/004 Strings_en.vtt
9.0 kB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/006 Lists in Python - advanced operations_en.vtt
8.9 kB
~Get Your Files Here !/21 - Appendix #6 - Pandas/009 Data filtering_en.vtt
8.9 kB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/004 What are array data structures II_en.vtt
8.8 kB
~Get Your Files Here !/20 - Appendix #5 - NumPy/002 Creating and updating arrays_en.vtt
8.7 kB
~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/002 Crawling the web with breadth-first search_en.vtt
8.5 kB
~Get Your Files Here !/21 - Appendix #6 - Pandas/003 Series_en.vtt
8.4 kB
~Get Your Files Here !/12 - #3 Challenge - Monte-Carlo Integration/001 What is the Monte-Carlo method_en.vtt
8.3 kB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/003 What are array data structures I_en.vtt
8.2 kB
~Get Your Files Here !/05 - Gauss Elimination Implementation/002 Gaussian elimination implementation II_en.vtt
8.2 kB
~Get Your Files Here !/21 - Appendix #6 - Pandas/010 Using the apply() function_en.vtt
8.1 kB
~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/001 What is gradient descent_en.vtt
8.1 kB
~Get Your Files Here !/21 - Appendix #6 - Pandas/001 What is Pandas_en.vtt
8.1 kB
~Get Your Files Here !/04 - Linear Systems and Gaussian Elimination/002 Gaussian elimination illustration_en.vtt
8.0 kB
~Get Your Files Here !/11 - Numerical Integration/004 Trapezoidal integral introduction_en.vtt
7.9 kB
~Get Your Files Here !/02 - ### NUMERICAL METHODS ###/004 Speed consideration - C, Java and Python_en.vtt
7.8 kB
~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/007 What is ADAGrad_en.vtt
7.7 kB
~Get Your Files Here !/21 - Appendix #6 - Pandas/012 What is vectorization_en.vtt
7.7 kB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/005 String slicing_en.vtt
7.6 kB
~Get Your Files Here !/20 - Appendix #5 - NumPy/007 Stacking and merging arrays_en.vtt
7.5 kB
~Get Your Files Here !/04 - Linear Systems and Gaussian Elimination/003 What is pivoting_en.vtt
7.4 kB
~Get Your Files Here !/09 - Interpolation/003 Interpolation implementation I_en.vtt
7.4 kB
~Get Your Files Here !/13 - Differential Equations/002 Euler's method introduction_en.vtt
7.2 kB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/011 Loops - for loop_en.vtt
7.1 kB
~Get Your Files Here !/13 - Differential Equations/007 Runge-Kutta method example I_en.vtt
7.1 kB
~Get Your Files Here !/04 - Linear Systems and Gaussian Elimination/001 What is Gaussian elimination_en.vtt
7.0 kB
~Get Your Files Here !/11 - Numerical Integration/003 Rectangle method implementation_en.vtt
7.0 kB
~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/003 Using the constructor_en.vtt
7.0 kB
~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/011 Modules_en.vtt
6.9 kB
~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/003 The original formula_en.vtt
6.9 kB
~Get Your Files Here !/09 - Interpolation/002 Interpolation illustration_en.vtt
6.8 kB
~Get Your Files Here !/21 - Appendix #6 - Pandas/008 Operations_en.vtt
6.8 kB
~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/001 Graph representation of the WWW_en.vtt
6.7 kB
~Get Your Files Here !/21 - Appendix #6 - Pandas/007 Reading CSV and text files_en.vtt
6.6 kB
~Get Your Files Here !/10 - Root Finding/003 Bisection method implementation_en.vtt
6.6 kB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/001 First steps in Python_en.vtt
6.6 kB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/005 Lists in Python_en.vtt
6.6 kB
~Get Your Files Here !/03 - Linear Algebra/002 Matrix multiplication implementation_en.vtt
6.6 kB
~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/006 Stochastic gradient descent implementation II_en.vtt
6.5 kB
~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/009 Power method_en.vtt
6.5 kB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/013 Doubly linked list implementation in Python_en.vtt
6.3 kB
~Get Your Files Here !/17 - Appendix #2 - Functions/002 Defining functions_en.vtt
6.3 kB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/007 Lists in Python - list comprehension_en.vtt
6.3 kB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/015 Break and continue_en.vtt
6.3 kB
~Get Your Files Here !/21 - Appendix #6 - Pandas/004 DataFrames_en.vtt
6.2 kB
~Get Your Files Here !/13 - Differential Equations/003 Euler's method example_en.vtt
6.2 kB
~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/010 Polymorphism and abstraction example_en.vtt
6.2 kB
~Get Your Files Here !/11 - Numerical Integration/007 Simpson's method implementation_en.vtt
6.1 kB
~Get Your Files Here !/07 - Eigenvalues And Eigenvectors/001 What are eigenvalues and eigenvectors_en.vtt
6.1 kB
~Get Your Files Here !/11 - Numerical Integration/002 Rectangle method introduction_en.vtt
6.1 kB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/007 Operators_en.vtt
6.0 kB
~Get Your Files Here !/21 - Appendix #6 - Pandas/013 Vectorization example I_en.vtt
5.9 kB
~Get Your Files Here !/17 - Appendix #2 - Functions/006 Yield operator_en.vtt
5.9 kB
~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/006 The random surfer model_en.vtt
5.8 kB
~Get Your Files Here !/11 - Numerical Integration/006 Simpson's method introduction_en.vtt
5.8 kB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/002 What are the basic data types_en.vtt
5.7 kB
~Get Your Files Here !/03 - Linear Algebra/003 Running time analysis of matrix multiplication_en.vtt
5.7 kB
~Get Your Files Here !/09 - Interpolation/004 Interpolation implementation II_en.vtt
5.6 kB
~Get Your Files Here !/11 - Numerical Integration/005 Trapezoidal integral implementation_en.vtt
5.5 kB
~Get Your Files Here !/10 - Root Finding/004 Newton method introduction_en.vtt
5.4 kB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/011 Mutability and immutability_en.vtt
5.4 kB
~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/009 What is polymorphism_en.vtt
5.4 kB
~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/010 ADAM optimizer introduction_en.vtt
5.4 kB
~Get Your Files Here !/17 - Appendix #2 - Functions/001 What are functions_en.vtt
5.3 kB
~Get Your Files Here !/03 - Linear Algebra/006 Lists and NumPy arrays_en.vtt
5.3 kB
~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/005 Private variables and name mangling_en.vtt
5.2 kB
~Get Your Files Here !/03 - Linear Algebra/001 Matrix multiplication introduction_en.vtt
5.2 kB
~Get Your Files Here !/13 - Differential Equations/006 Runge-Kutta method introduction_en.vtt
5.2 kB
~Get Your Files Here !/20 - Appendix #5 - NumPy/001 What is the key advantage of NumPy_en.vtt
5.1 kB
~Get Your Files Here !/12 - #3 Challenge - Monte-Carlo Integration/003 Monte-Carlo integral implementation II_en.vtt
5.1 kB
~Get Your Files Here !/20 - Appendix #5 - NumPy/005 Types_en.vtt
5.1 kB
~Get Your Files Here !/17 - Appendix #2 - Functions/007 What are the most relevant built-in functions_en.vtt
5.0 kB
~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/007 The super keyword_en.vtt
5.0 kB
~Get Your Files Here !/21 - Appendix #6 - Pandas/006 Speed comparison - DataFrame operations_en.vtt
5.0 kB
~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/004 Class variables and instance variables_en.vtt
5.0 kB
~Get Your Files Here !/13 - Differential Equations/008 Runge-Kutta method example II_en.vtt
5.0 kB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/012 Loops - while loop_en.vtt
5.0 kB
~Get Your Files Here !/03 - Linear Algebra/005 Inner product_en.vtt
5.0 kB
~Get Your Files Here !/10 - Root Finding/002 Bisection method introduction_en.vtt
4.9 kB
~Get Your Files Here !/17 - Appendix #2 - Functions/009 Local vs global variables_en.vtt
4.9 kB
~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/003 Gradient descent with momentum_en.vtt
4.8 kB
~Get Your Files Here !/10 - Root Finding/005 Newton method implementation_en.vtt
4.8 kB
~Get Your Files Here !/13 - Differential Equations/005 Euler's method example - pendulum with drag_en.vtt
4.8 kB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/006 Type casting_en.vtt
4.8 kB
~Get Your Files Here !/02 - ### NUMERICAL METHODS ###/003 Rounding errors_en.vtt
4.8 kB
~Get Your Files Here !/03 - Linear Algebra/004 Matrix vector multiplication_en.vtt
4.8 kB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/008 Conditional statements_en.vtt
4.7 kB
~Get Your Files Here !/03 - Linear Algebra/007 Matrix operations with NumPy_en.vtt
4.6 kB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/014 Enumerate_en.vtt
4.4 kB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/010 What are tuples_en.vtt
4.4 kB
~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/009 What is RMSProp_en.vtt
4.4 kB
~Get Your Files Here !/20 - Appendix #5 - NumPy/008 Filter_en.vtt
4.3 kB
~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/006 What is inheritance in OOP_en.vtt
4.2 kB
~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/007 What are the problems with the random surfer model_en.vtt
4.2 kB
~Get Your Files Here !/10 - Root Finding/001 Root of functions introduction_en.vtt
4.2 kB
~Get Your Files Here !/06 - #1 Challenge - Portfolio Optimization/001 Portfolio optimization introduction_en.vtt
4.1 kB
~Get Your Files Here !/17 - Appendix #2 - Functions/010 The __main__ function_en.vtt
4.1 kB
~Get Your Files Here !/21 - Appendix #6 - Pandas/014 Vectorization example II_en.vtt
4.1 kB
~Get Your Files Here !/04 - Linear Systems and Gaussian Elimination/004 Gaussian elimination and singular matrixes_en.vtt
4.1 kB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/002 Data structures introduction_en.vtt
4.1 kB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/010 Logical operators_en.vtt
4.1 kB
~Get Your Files Here !/11 - Numerical Integration/001 Integration introduction_en.vtt
3.9 kB
~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/012 The __str__ function_en.vtt
3.6 kB
~Get Your Files Here !/07 - Eigenvalues And Eigenvectors/002 Eigenvalues and eigenvectors implementation_en.vtt
3.6 kB
~Get Your Files Here !/02 - ### NUMERICAL METHODS ###/002 Precision and accuracy_en.vtt
3.5 kB
~Get Your Files Here !/21 - Appendix #6 - Pandas/002 First steps_en.vtt
3.5 kB
~Get Your Files Here !/17 - Appendix #2 - Functions/005 Returning multiple values_en.vtt
3.4 kB
~Get Your Files Here !/12 - #3 Challenge - Monte-Carlo Integration/004 Applications of Monte-Carlo simulations in finance_en.vtt
3.4 kB
~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/002 Class and objects basics_en.vtt
3.3 kB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/013 What are nested loops_en.vtt
3.1 kB
~Get Your Files Here !/06 - #1 Challenge - Portfolio Optimization/002 Portfolio optimization implementation_en.vtt
3.1 kB
~Get Your Files Here !/21 - Appendix #6 - Pandas/011 Speed comparison - loops and apply()_en.vtt
3.0 kB
~Get Your Files Here !/09 - Interpolation/005 Applications of interpolation_en.vtt
3.0 kB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/016 Calculating Fibonacci-numbers_en.vtt
3.0 kB
~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/001 What is object oriented programming (OOP)_en.vtt
2.9 kB
~Get Your Files Here !/19 - Appendix #4 - Object Oriented Programming (OOP)/008 Function (method) override_en.vtt
2.8 kB
~Get Your Files Here !/17 - Appendix #2 - Functions/004 Returning values_en.vtt
2.8 kB
~Get Your Files Here !/01 - Introduction/001 Introduction_en.vtt
2.5 kB
~Get Your Files Here !/07 - Eigenvalues And Eigenvectors/003 Applications of eigenvectors in machine learning_en.vtt
2.3 kB
~Get Your Files Here !/16 - Appendix #1 - Python Basics/003 Booleans_en.vtt
2.3 kB
~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/006 StochasticGradientDescentRegression.py
2.2 kB
~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/StochasticGradientDescentRegression.py
2.2 kB
~Get Your Files Here !/09 - Interpolation/004 LagrangeInterpolation.py
2.2 kB
~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/LagrangeInterpolation.py
2.2 kB
~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/005 StochasticGradientDescent.py
2.0 kB
~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/StochasticGradientDescent.py
2.0 kB
~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/008 GradientDescentAdaGrad.py
1.6 kB
~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/GradientDescentAdaGrad.py
1.6 kB
~Get Your Files Here !/20 - Appendix #5 - NumPy/009 Running time comparison arrays and lists.html
1.4 kB
~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/GradientDescentMomentum.py
1.3 kB
~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/002 GradientDescent.py
1.3 kB
~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/GradientDescent.py
1.3 kB
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/009 Measuring running time of lists.html
1.3 kB
~Get Your Files Here !/12 - #3 Challenge - Monte-Carlo Integration/002 MonteCarloIntegral.py
1.2 kB
~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/MonteCarloIntegral.py
1.2 kB
~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/011 ADAM.py
1.1 kB
~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/ADAM.py
1.1 kB
~Get Your Files Here !/05 - Gauss Elimination Implementation/002 GaussElimination.py
838 Bytes
~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/GaussElimination.py
838 Bytes
~Get Your Files Here !/12 - #3 Challenge - Monte-Carlo Integration/003 MonteCarloIntegral2.py
676 Bytes
~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/MonteCarloIntegral2.py
676 Bytes
~Get Your Files Here !/13 - Differential Equations/008 RungeKuttaExample2.py
663 Bytes
~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/RungeKuttaExample2.py
663 Bytes
~Get Your Files Here !/13 - Differential Equations/007 RungeKuttaExample1.py
648 Bytes
~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/RungeKuttaExample1.py
648 Bytes
~Get Your Files Here !/18 - Appendix #3 - Data Structures in Python/008 (!!!) Python lists and arrays.html
628 Bytes
~Get Your Files Here !/11 - Numerical Integration/007 SimpsonMethod.py
511 Bytes
~Get Your Files Here !/03 - Linear Algebra/002 MatrixMultiplication.py
496 Bytes
~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/MatrixMultiplication.py
496 Bytes
~Get Your Files Here !/11 - Numerical Integration/005 TrapezoidalIntegral.py
468 Bytes
~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/TrapezoidalIntegral.py
468 Bytes
~Get Your Files Here !/13 - Differential Equations/003 EulerMethodExample1.py
449 Bytes
~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/EulerMethodExample1.py
449 Bytes
~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/EulerMethodExample3.py
449 Bytes
~Get Your Files Here !/15 - ### APPENDIX - PYTHON PROGRAMMING CRASH COURSE ###/001 Python crash course introduction.html
441 Bytes
~Get Your Files Here !/03 - Linear Algebra/004 MatrixVectorMultiplication.py
423 Bytes
~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/MatrixVectorMultiplication.py
423 Bytes
~Get Your Files Here !/13 - Differential Equations/004 EulerMethodExample2.py
421 Bytes
~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/EulerMethodExample2.py
421 Bytes
~Get Your Files Here !/03 - Linear Algebra/005 InnerProduct.py
386 Bytes
~Get Your Files Here !/Bonus Resources.txt
386 Bytes
~Get Your Files Here !/11 - Numerical Integration/003 RectangleIntegral.py
376 Bytes
~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/RectangleIntegral.py
376 Bytes
~Get Your Files Here !/10 - Root Finding/003 BisectionMethod.py
360 Bytes
~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/BisectionMethod.py
360 Bytes
~Get Your Files Here !/04 - Linear Systems and Gaussian Elimination/005 Mathematical formulation of Gaussian elimination.html
345 Bytes
~Get Your Files Here !/10 - Root Finding/005 NewtonRaphsonMethod.py
294 Bytes
~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/NewtonRaphsonMethod.py
294 Bytes
~Get Your Files Here !/14 - ### NUMERICAL OPTIMIZATION (MACHINE LEARNING ALGORITHMS) ###/012 Mathematical formulation of optimization algorithms in machine learning.html
275 Bytes
~Get Your Files Here !/10 - Root Finding/006 Mathematical formulation of root finding.html
271 Bytes
~Get Your Files Here !/09 - Interpolation/006 Mathematical formulation of interpolation.html
265 Bytes
~Get Your Files Here !/07 - Eigenvalues And Eigenvectors/004 Mathematical formulation of eigenvectors.html
261 Bytes
~Get Your Files Here !/08 - #2 Challenge - Google's PageRank Algorithm/010 Original scientific paper of PageRank algorithm.html
254 Bytes
~Get Your Files Here !/13 - Differential Equations/009 Mathematical formulation of numerical differentiation.html
251 Bytes
~Get Your Files Here !/11 - Numerical Integration/008 Mathematical formulation of numerical integration.html
245 Bytes
~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/NumPyOperations.py
224 Bytes
Get Bonus Downloads Here.url
182 Bytes
~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/EigenvectorExample.py
117 Bytes
~Get Your Files Here !/22 - Course Materials (DOWNLOADS)/001 Course material.html
58 Bytes
==查看完整文档列表==
上一个:
Clean (2022) 1080p
4.5 GB
下一个:
e3i3.com 颜值不错的妹子和胖姐姐一起直播秀 躺在床上刮毛 舌吻 舔逼 手指插逼 边吃边插 叫声诱人 非常精彩
481.8 MB
猜你喜欢
Methods Of Mayhem - Methods Of Mayhem (1999)
319.1 MB
Methods of Mayhem - Methods of Mayhem @FLAC
264.6 MB
Methods Body - 2020 - Methods Body (web)
253.5 MB
1999 - Methods of Mayhem - Methods of Mayhem
88.4 MB
[Guitar Lesson Video] - Curt Mitchell - guitar methods
3.9 GB
[ FreeCourseWeb.com ] Udemy - Setting Priorities Right -...
200.1 MB
Pristine.Edge.Unorthodox.Muff.Methods.Milfty.MILF.bigtits.mp4
338.4 MB
Milfty.19.02.08.Pristine.Edge.Unorthodox.Muff.Methods..48...
264.7 MB
[Udemy] Advanced Environment Texturing Methods in Photoshop
1.3 GB
Theory Methods
129.2 MB