磁力狗
导航切换
首页
最新地址
最新地址
最新地址
最新地址
搜索磁力
BT种子名称
[DesireCourse.Net] Udemy - Deploy Machine Learning & NLP Models with Dockers (DevOps)
请保存以下最新地址
clgou.icu
clgougou.cc
clg.dog
clgougou.com
BT种子基本信息
种子哈希:
378f2fde48c99a7d0eb5bbc012a5ea0588422d5e
文档大小:
2.3 GB
文档个数:
129
个文档
下载次数:
4584
次
下载速度:
极快
收录时间:
2020-02-20
最近下载:
2025-06-25
下载磁力链接
magnet:?xt=urn:btih:378F2FDE48C99A7D0EB5BBC012A5EA0588422D5E
复制磁力链接到
PikPak
、utorrent、Bitcomet、迅雷、115、百度网盘等下载工具进行下载。
下载BT种子
磁力链接
种子下载
迅雷下载
二维码
51TikTok破解
91视频
91短视频
51品茶
逼哩逼哩
萝莉岛
欲漫涩
草榴社区
含羞草
抖阴破解版
TikTok成人版
成人快手
哆哔涩漫
成人DeepSeek
极乐禁地
文档列表
7. Building NLP based Text Clustering application/5. Preparing the excel output.mp4
114.1 MB
7. Building NLP based Text Clustering application/3. Converting unstructured to structured data.mp4
100.3 MB
8. API for image recognition with deep learning/4. Building the deep learning model.mp4
97.7 MB
7. Building NLP based Text Clustering application/2. Stemming & Lemmatization for cleaner text.mp4
95.3 MB
8. API for image recognition with deep learning/3. Preparing the input images.mp4
93.9 MB
6. Building a production grade Docker application/5. Running and debugging a docker container in production.mp4
90.2 MB
4. Exposing a Random Forest Machine Learning service as an API/8. Flasgger for autogenerating UI.mp4
89.3 MB
7. Building NLP based Text Clustering application/4. KMeans Clustering.mp4
86.2 MB
5. Writing and building the Dockerfile/8. Running the Random Forest model on Docker.mp4
82.6 MB
8. API for image recognition with deep learning/7. Flask API wrapper for making predictions.mp4
82.1 MB
7. Building NLP based Text Clustering application/8. Final output with charts.mp4
80.1 MB
4. Exposing a Random Forest Machine Learning service as an API/7. Providing file input to Flask API.mp4
79.4 MB
7. Building NLP based Text Clustering application/7. Finding top keywords for kmeans clusters.mp4
78.6 MB
5. Writing and building the Dockerfile/7. Building the docker image.mp4
78.4 MB
8. API for image recognition with deep learning/2. Visualizing the input images.mp4
71.7 MB
7. Building NLP based Text Clustering application/6. Making the output Downloadable.mp4
68.7 MB
6. Building a production grade Docker application/3. Configuring the WSGI file.mp4
65.5 MB
6. Building a production grade Docker application/4. Writing a production grade Dockerfile.mp4
64.4 MB
4. Exposing a Random Forest Machine Learning service as an API/5. Exposing the Random Forest model as a Flask API.mp4
56.9 MB
3. Flask basics/5. POST request with Flask.mp4
50.3 MB
5. Writing and building the Dockerfile/6. Writing the Dockerfile.mp4
48.2 MB
4. Exposing a Random Forest Machine Learning service as an API/3. Training the Random Forest model.mp4
48.0 MB
4. Exposing a Random Forest Machine Learning service as an API/6. Testing the API model.mp4
38.4 MB
3. Flask basics/3. Simple Flask API to add two numbers.mp4
38.2 MB
8. API for image recognition with deep learning/6. Generating test images.mp4
35.9 MB
4. Exposing a Random Forest Machine Learning service as an API/4. Pickling the Random Forest model.mp4
35.5 MB
3. Flask basics/4. Taking user input with GET requests.mp4
35.1 MB
8. API for image recognition with deep learning/5. Training and saving the trained deep learning model.mp4
32.5 MB
3. Flask basics/6. Using Flask in the context of Machine Learning.mp4
31.7 MB
5. Writing and building the Dockerfile/4. WORKDIR, RUN and CMD commands.mp4
31.0 MB
6. Building a production grade Docker application/1. Introduction.mp4
27.8 MB
6. Building a production grade Docker application/2. Overall Architecture.mp4
24.8 MB
5. Writing and building the Dockerfile/3. COPY and EXPOSE commands.mp4
22.8 MB
5. Writing and building the Dockerfile/5. Preparing the flask scripts for dockerizing.mp4
22.6 MB
2. Docker basics/1. Why docker.mp4
21.4 MB
8. API for image recognition with deep learning/8. Summary.mp4
19.3 MB
7. Building NLP based Text Clustering application/1. Introduction.mp4
19.0 MB
7. Building NLP based Text Clustering application/9. Summary.mp4
17.3 MB
2. Docker basics/3. Importance of docker containers in machine learning.mp4
15.5 MB
5. Writing and building the Dockerfile/2. Base Image & FROM command.mp4
15.5 MB
4. Exposing a Random Forest Machine Learning service as an API/9. Summary.mp4
14.2 MB
2. Docker basics/2. What are docker containers.mp4
12.6 MB
2. Docker basics/4. Where devops meets data science.mp4
12.2 MB
1. Course Overview/1. Introduction.mp4
11.0 MB
3. Flask basics/2. Setting up a Flask Project.mp4
9.6 MB
4. Exposing a Random Forest Machine Learning service as an API/2. API & Dataset Overview.mp4
8.0 MB
1. Course Overview/3. Skills Checklist.mp4
7.8 MB
1. Course Overview/2. I have a model. Now what.mp4
6.4 MB
8. API for image recognition with deep learning/1. Introduction.mp4
5.3 MB
1. Course Overview/4. Learning Goals.mp4
4.5 MB
3. Flask basics/1. Introduction.mp4
4.3 MB
4. Exposing a Random Forest Machine Learning service as an API/1. Introduction.mp4
4.1 MB
5. Writing and building the Dockerfile/1. Introduction.mp4
2.3 MB
2. Docker basics/5. Summary.mp4
2.2 MB
1. Course Overview/1.1 Course Overview.pdf.pdf
963.0 kB
2. Docker basics/1.1 Docker basics.pdf.pdf
853.5 kB
7. Building NLP based Text Clustering application/3. Converting unstructured to structured data.mp4.jpg
79.3 kB
2. Docker basics/2. What are docker containers.mp4.jpg
71.7 kB
6. Building a production grade Docker application/3.1 Docker deployment.zip.zip
11.8 kB
8. API for image recognition with deep learning/4. Building the deep learning model.vtt
10.3 kB
6. Building a production grade Docker application/5. Running and debugging a docker container in production.vtt
10.3 kB
7. Building NLP based Text Clustering application/2. Stemming & Lemmatization for cleaner text.vtt
10.1 kB
7. Building NLP based Text Clustering application/5. Preparing the excel output.vtt
9.9 kB
7. Building NLP based Text Clustering application/3. Converting unstructured to structured data.vtt
9.1 kB
5. Writing and building the Dockerfile/2.1 Docker sample.zip.zip
9.1 kB
4. Exposing a Random Forest Machine Learning service as an API/8. Flasgger for autogenerating UI.vtt
8.4 kB
5. Writing and building the Dockerfile/8. Running the Random Forest model on Docker.vtt
8.3 kB
5. Writing and building the Dockerfile/6. Writing the Dockerfile.vtt
8.3 kB
5. Writing and building the Dockerfile/7. Building the docker image.vtt
7.9 kB
8. API for image recognition with deep learning/3. Preparing the input images.vtt
7.8 kB
6. Building a production grade Docker application/3. Configuring the WSGI file.vtt
7.6 kB
7. Building NLP based Text Clustering application/4. KMeans Clustering.vtt
7.2 kB
6. Building a production grade Docker application/4. Writing a production grade Dockerfile.vtt
7.1 kB
8. API for image recognition with deep learning/7. Flask API wrapper for making predictions.vtt
6.5 kB
8. API for image recognition with deep learning/2. Visualizing the input images.vtt
6.4 kB
4. Exposing a Random Forest Machine Learning service as an API/7. Providing file input to Flask API.vtt
5.8 kB
7. Building NLP based Text Clustering application/8. Final output with charts.vtt
5.7 kB
7. Building NLP based Text Clustering application/7. Finding top keywords for kmeans clusters.vtt
5.7 kB
7. Building NLP based Text Clustering application/6. Making the output Downloadable.vtt
5.2 kB
3. Flask basics/5. POST request with Flask.vtt
5.2 kB
6. Building a production grade Docker application/2. Overall Architecture.vtt
4.4 kB
6. Building a production grade Docker application/1. Introduction.vtt
4.4 kB
4. Exposing a Random Forest Machine Learning service as an API/5. Exposing the Random Forest model as a Flask API.vtt
4.4 kB
4. Exposing a Random Forest Machine Learning service as an API/3. Training the Random Forest model.vtt
4.4 kB
5. Writing and building the Dockerfile/4. WORKDIR, RUN and CMD commands.vtt
3.9 kB
7. Building NLP based Text Clustering application/2.1 text_cluster_api.py.py
3.7 kB
4. Exposing a Random Forest Machine Learning service as an API/6. Testing the API model.vtt
3.5 kB
3. Flask basics/4. Taking user input with GET requests.vtt
3.5 kB
5. Writing and building the Dockerfile/3. COPY and EXPOSE commands.vtt
3.5 kB
3. Flask basics/3. Simple Flask API to add two numbers.vtt
3.4 kB
5. Writing and building the Dockerfile/2. Base Image & FROM command.vtt
3.3 kB
8. API for image recognition with deep learning/6. Generating test images.vtt
3.2 kB
2. Docker basics/3. Importance of docker containers in machine learning.vtt
3.1 kB
3. Flask basics/6. Using Flask in the context of Machine Learning.vtt
3.1 kB
8. API for image recognition with deep learning/5. Training and saving the trained deep learning model.vtt
3.0 kB
4. Exposing a Random Forest Machine Learning service as an API/4. Pickling the Random Forest model.vtt
2.5 kB
2. Docker basics/2. What are docker containers.vtt
2.3 kB
8. API for image recognition with deep learning/8. Summary.vtt
2.3 kB
7. Building NLP based Text Clustering application/1. Introduction.vtt
2.1 kB
8. API for image recognition with deep learning/2.1 img_reco_train.py.py
2.0 kB
4. Exposing a Random Forest Machine Learning service as an API/9. Summary.vtt
1.9 kB
1. Course Overview/3. Skills Checklist.vtt
1.8 kB
2. Docker basics/1. Why docker.vtt
1.8 kB
5. Writing and building the Dockerfile/5. Preparing the flask scripts for dockerizing.vtt
1.7 kB
4. Exposing a Random Forest Machine Learning service as an API/5.1 flask_predict_api.py.py
1.7 kB
7. Building NLP based Text Clustering application/9. Summary.vtt
1.6 kB
3. Flask basics/2. Setting up a Flask Project.vtt
1.5 kB
1. Course Overview/2. I have a model. Now what.vtt
1.3 kB
1. Course Overview/1. Introduction.vtt
1.1 kB
8. API for image recognition with deep learning/6.1 img_reco_test.py.py
1.1 kB
4. Exposing a Random Forest Machine Learning service as an API/2. API & Dataset Overview.vtt
1.0 kB
4. Exposing a Random Forest Machine Learning service as an API/2.1 flask_predict_train.py.py
1.0 kB
2. Docker basics/4. Where devops meets data science.vtt
987 Bytes
8. API for image recognition with deep learning/1. Introduction.vtt
773 Bytes
5. Writing and building the Dockerfile/1. Introduction.vtt
753 Bytes
1. Course Overview/4. Learning Goals.vtt
708 Bytes
4. Exposing a Random Forest Machine Learning service as an API/1. Introduction.vtt
678 Bytes
3. Flask basics/1. Introduction.vtt
625 Bytes
1. Course Overview/Must Read.txt
540 Bytes
3. Flask basics/2.1 flask1.py.py
428 Bytes
2. Docker basics/5. Summary.vtt
382 Bytes
7. Building NLP based Text Clustering application/3. Converting unstructured to structured data.txt
244 Bytes
2. Docker basics/2. What are docker containers.txt
226 Bytes
7. Building NLP based Text Clustering application/10. Dockerizing the text clustering app.html
164 Bytes
8. API for image recognition with deep learning/9. Dockerizing the deep learning app.html
164 Bytes
6. Building a production grade Docker application/6. Docker Quiz 1 – Basic Concepts, Commands.html
160 Bytes
1. Course Overview/Visit Coursedrive.org.url
124 Bytes
[DesireCourse.Net].url
51 Bytes
[CourseClub.Me].url
48 Bytes
==查看完整文档列表==
下一个:
Carib-020412-934-HD
2.0 GB
猜你喜欢
Fateful.Findings.(2013).Dockers.DVD.Rip
555.4 MB
Deploy Machine Learning & NLP Models with Dockers (DevOps).rar
2.3 GB
Cake.Masters.S01E06.Duffs.Rockin.Dockers.Cake.PDTV.x264-J...
441.7 MB
Fremantle Dockers - Hawthorn Hawks 10.08.20.mkv
2.2 GB
[ DevCourseWeb.com ] Udemy - Dockers using Linux...
2.9 GB
Fremantle Dockers - Western Bulldogs 20.09.20.mkv
2.3 GB
Australian.Families.Of.Crime.Dockers.and.Death.WS.PDTV.XV...
369.7 MB
Dockers
4.5 GB
Fremantle Dockers - Western Bulldogs 06.06.21.mkv
6.3 GB
St Kilda Saints - Fremantle Dockers 22.08.2021.mkv
4.8 GB
>