磁力狗
导航切换
首页
最新地址
最新地址
最新地址
最新地址
搜索磁力
BT种子名称
[FreeCoursesOnline.Me] Coursera - Machine Learning
请保存以下最新地址
clgou.icu
clgougou.cyou
clg.dog
磁力.dog
BT种子基本信息
种子哈希:
1912b056a26877730ef548afac2bb75a9106f9dc
文档大小:
2.0 GB
文档个数:
229
个文档
下载次数:
3530
次
下载速度:
极快
收录时间:
2020-02-09
最近下载:
2025-01-04
DMCA/屏蔽:
DMCA/屏蔽
下载磁力链接
magnet:?xt=urn:btih:1912B056A26877730EF548AFAC2BB75A9106F9DC
复制磁力链接到
PikPak
、utorrent、Bitcomet、迅雷、115、百度网盘等下载工具进行下载。
下载BT种子
磁力链接
种子下载
迅雷下载
二维码
YouTube成人版
91视频
91短视频
51品茶
逼哩逼哩
萝莉岛
欲漫涩
草榴社区
含羞草
抖阴破解版
TikTok成人版
成人快手
乱伦社区
91AV
暗网禁地
文档列表
027.SVMs in Practice/076. Using An SVM.mp4
33.5 MB
009.Octave Matlab Tutorial/028. Moving Data Around.mp4
31.0 MB
025.Large Margin Classification/073. Mathematics Behind Large Margin Classification.mp4
29.9 MB
019.Application of Neural Networks/058. Autonomous Driving.mp4
29.7 MB
011.Logistic Regression Model/038. Advanced Optimization.mp4
28.1 MB
040.Photo OCR/111. Getting Lots of Data and Artificial Data.mp4
26.5 MB
009.Octave Matlab Tutorial/027. Basic Operations.mp4
26.1 MB
030.Principal Component Analysis/085. Principal Component Analysis Algorithm.mp4
25.5 MB
009.Octave Matlab Tutorial/031. Control Statements for, while, if statement.mp4
25.0 MB
007.Computing Parameters Analytically/024. Normal Equation.mp4
24.8 MB
018.Backpropagation in Practice/057. Putting It Together.mp4
24.7 MB
002.Introduction/005. Unsupervised Learning.mp4
24.5 MB
035.Predicting Movie Ratings/098. Content Based Recommendations.mp4
24.3 MB
026.Kernels/074. Kernels I.mp4
23.9 MB
026.Kernels/075. Kernels II.mp4
23.7 MB
034.Multivariate Gaussian Distribution (Optional)/096. Anomaly Detection using the Multivariate Gaussian Distribution.mp4
23.5 MB
009.Octave Matlab Tutorial/032. Vectorization.mp4
23.3 MB
017.Cost Function and Backpropagation/053. Backpropagation Intuition.mp4
23.3 MB
010.Classification and Representation/035. Decision Boundary.mp4
23.3 MB
040.Photo OCR/110. Sliding Windows.mp4
23.0 MB
040.Photo OCR/112. Ceiling Analysis What Part of the Pipeline to Work on Next.mp4
23.0 MB
025.Large Margin Classification/071. Optimization Objective.mp4
23.0 MB
034.Multivariate Gaussian Distribution (Optional)/095. Multivariate Gaussian Distribution.mp4
22.9 MB
029.Motivation/082. Motivation I Data Compression.mp4
22.5 MB
023.Handling Skewed Data/069. Trading Off Precision and Recall.mp4
22.3 MB
022.Building a Spam Classifier/067. Error Analysis.mp4
22.3 MB
039.Advanced Topics/108. Map Reduce and Data Parallelism.mp4
22.3 MB
038.Gradient Descent with Large Datasets/104. Stochastic Gradient Descent.mp4
22.0 MB
016.Applications/049. Examples and Intuitions II.mp4
21.9 MB
033.Building an Anomaly Detection System/092. Developing and Evaluating an Anomaly Detection System.mp4
21.5 MB
039.Advanced Topics/107. Online Learning.mp4
21.5 MB
009.Octave Matlab Tutorial/030. Plotting Data.mp4
21.1 MB
009.Octave Matlab Tutorial/029. Computing on Data.mp4
20.8 MB
031.Applying PCA/088. Advice for Applying PCA.mp4
20.7 MB
033.Building an Anomaly Detection System/094. Choosing What Features to Use.mp4
20.0 MB
017.Cost Function and Backpropagation/052. Backpropagation Algorithm.mp4
20.0 MB
020.Evaluating a Learning Algorithm/061. Model Selection and Train Validation Test Sets.mp4
20.0 MB
032.Density Estimation/091. Algorithm.mp4
19.9 MB
005.Linear Algebra Review/015. Matrix Vector Multiplication.mp4
19.8 MB
004.Parameter Learning/010. Gradient Descent.mp4
19.6 MB
015.Neural Networks/047. Model Representation II.mp4
19.3 MB
018.Backpropagation in Practice/055. Gradient Checking.mp4
19.2 MB
002.Introduction/002. Welcome.mp4
19.2 MB
038.Gradient Descent with Large Datasets/106. Stochastic Gradient Descent Convergence.mp4
19.0 MB
015.Neural Networks/046. Model Representation I.mp4
18.9 MB
023.Handling Skewed Data/068. Error Metrics for Skewed Classes.mp4
18.8 MB
028.Clustering/078. K-Means Algorithm.mp4
18.5 MB
024.Using Large Data Sets/070. Data For Machine Learning.mp4
18.2 MB
005.Linear Algebra Review/018. Inverse and Transpose.mp4
17.8 MB
003.Model and Cost Function/009. Cost Function - Intuition II.mp4
17.8 MB
013.Solving the Problem of Overfitting/043. Regularized Logistic Regression.mp4
17.6 MB
002.Introduction/004. Supervised Learning.mp4
17.5 MB
004.Parameter Learning/011. Gradient Descent Intuition.mp4
17.4 MB
004.Parameter Learning/012. Gradient Descent For Linear Regression.mp4
17.2 MB
035.Predicting Movie Ratings/097. Problem Formulation.mp4
17.2 MB
021.Bias vs. Variance/064. Learning Curves.mp4
17.2 MB
021.Bias vs. Variance/063. Regularization and Bias Variance.mp4
17.2 MB
005.Linear Algebra Review/016. Matrix Matrix Multiplication.mp4
17.1 MB
011.Logistic Regression Model/037. Simplified Cost Function and Gradient Descent.mp4
17.0 MB
011.Logistic Regression Model/036. Cost Function.mp4
16.6 MB
031.Applying PCA/087. Choosing the Number of Principal Components.mp4
16.4 MB
013.Solving the Problem of Overfitting/042. Regularized Linear Regression.mp4
16.4 MB
003.Model and Cost Function/008. Cost Function - Intuition I.mp4
16.3 MB
036.Collaborative Filtering/099. Collaborative Filtering.mp4
16.3 MB
013.Solving the Problem of Overfitting/041. Cost Function.mp4
16.3 MB
025.Large Margin Classification/072. Large Margin Intuition.mp4
15.9 MB
032.Density Estimation/090. Gaussian Distribution.mp4
15.9 MB
022.Building a Spam Classifier/066. Prioritizing What to Work On.mp4
15.8 MB
013.Solving the Problem of Overfitting/040. The Problem of Overfitting.mp4
15.7 MB
014.Motivations/044. Non-linear Hypotheses.mp4
15.5 MB
036.Collaborative Filtering/100. Collaborative Filtering Algorithm.mp4
15.4 MB
014.Motivations/045. Neurons and the Brain.mp4
15.3 MB
030.Principal Component Analysis/084. Principal Component Analysis Problem Formulation.mp4
14.7 MB
033.Building an Anomaly Detection System/093. Anomaly Detection vs. Supervised Learning.mp4
13.8 MB
006.Multivariate Linear Regression/021. Gradient Descent in Practice I - Feature Scaling.mp4
13.6 MB
018.Backpropagation in Practice/054. Implementation Note Unrolling Parameters.mp4
13.5 MB
037.Low Rank Matrix Factorization/102. Implementational Detail Mean Normalization.mp4
13.5 MB
037.Low Rank Matrix Factorization/101. Vectorization Low Rank Matrix Factorization.mp4
13.4 MB
006.Multivariate Linear Regression/022. Gradient Descent in Practice II - Learning Rate.mp4
13.2 MB
028.Clustering/081. Choosing the Number of Clusters.mp4
12.8 MB
021.Bias vs. Variance/062. Diagnosing Bias vs. Variance.mp4
12.8 MB
005.Linear Algebra Review/017. Matrix Multiplication Properties.mp4
12.7 MB
005.Linear Algebra Review/013. Matrices and Vectors.mp4
12.5 MB
006.Multivariate Linear Regression/019. Multiple Features.mp4
12.1 MB
006.Multivariate Linear Regression/023. Features and Polynomial Regression.mp4
12.1 MB
003.Model and Cost Function/007. Cost Function.mp4
12.1 MB
021.Bias vs. Variance/065. Deciding What to Do Next Revisited.mp4
12.0 MB
003.Model and Cost Function/006. Model Representation.mp4
12.0 MB
002.Introduction/003. What is Machine Learning.mp4
12.0 MB
010.Classification and Representation/033. Classification.mp4
11.9 MB
010.Classification and Representation/034. Hypothesis Representation.mp4
11.7 MB
028.Clustering/080. Random Initialization.mp4
11.7 MB
020.Evaluating a Learning Algorithm/060. Evaluating a Hypothesis.mp4
11.6 MB
028.Clustering/079. Optimization Objective.mp4
11.4 MB
032.Density Estimation/089. Problem Motivation.mp4
11.1 MB
040.Photo OCR/109. Problem Description and Pipeline.mp4
10.9 MB
017.Cost Function and Backpropagation/051. Cost Function.mp4
10.7 MB
016.Applications/048. Examples and Intuitions I.mp4
10.6 MB
018.Backpropagation in Practice/056. Random Initialization.mp4
10.3 MB
038.Gradient Descent with Large Datasets/105. Mini-Batch Gradient Descent.mp4
10.2 MB
020.Evaluating a Learning Algorithm/059. Deciding What to Try Next.mp4
9.8 MB
005.Linear Algebra Review/014. Addition and Scalar Multiplication.mp4
9.7 MB
001.Welcome/001. Welcome to Machine Learning!.mp4
9.6 MB
041.Conclusion/113. Summary and Thank You.mp4
9.5 MB
012.Multiclass Classification/039. Multiclass Classification One-vs-all.mp4
9.5 MB
008.Submitting Programming Assignments/026. Working on and Submitting Programming Assignments.mp4
9.4 MB
007.Computing Parameters Analytically/025. Normal Equation Noninvertibility.mp4
9.2 MB
038.Gradient Descent with Large Datasets/103. Learning With Large Datasets.mp4
9.0 MB
029.Motivation/083. Motivation II Visualization.mp4
8.7 MB
006.Multivariate Linear Regression/020. Gradient Descent for Multiple Variables.mp4
8.0 MB
031.Applying PCA/086. Reconstruction from Compressed Representation.mp4
7.5 MB
016.Applications/050. Multiclass Classification.mp4
7.3 MB
028.Clustering/077. Unsupervised Learning Introduction.mp4
5.4 MB
027.SVMs in Practice/076. Using An SVM.srt
42.1 kB
025.Large Margin Classification/073. Mathematics Behind Large Margin Classification.srt
34.6 kB
040.Photo OCR/111. Getting Lots of Data and Artificial Data.srt
34.0 kB
040.Photo OCR/110. Sliding Windows.srt
30.4 kB
007.Computing Parameters Analytically/024. Normal Equation.srt
30.2 kB
026.Kernels/075. Kernels II.srt
29.6 kB
002.Introduction/005. Unsupervised Learning.srt
28.1 kB
026.Kernels/074. Kernels I.srt
28.0 kB
039.Advanced Topics/108. Map Reduce and Data Parallelism.srt
27.9 kB
009.Octave Matlab Tutorial/028. Moving Data Around.srt
27.6 kB
030.Principal Component Analysis/085. Principal Component Analysis Algorithm.srt
27.6 kB
011.Logistic Regression Model/038. Advanced Optimization.srt
26.9 kB
018.Backpropagation in Practice/057. Putting It Together.srt
26.8 kB
039.Advanced Topics/107. Online Learning.srt
26.7 kB
034.Multivariate Gaussian Distribution (Optional)/095. Multivariate Gaussian Distribution.srt
26.5 kB
033.Building an Anomaly Detection System/092. Developing and Evaluating an Anomaly Detection System.srt
26.4 kB
034.Multivariate Gaussian Distribution (Optional)/096. Anomaly Detection using the Multivariate Gaussian Distribution.srt
25.4 kB
031.Applying PCA/088. Advice for Applying PCA.srt
25.4 kB
028.Clustering/078. K-Means Algorithm.srt
25.3 kB
009.Octave Matlab Tutorial/027. Basic Operations.srt
24.5 kB
033.Building an Anomaly Detection System/094. Choosing What Features to Use.srt
24.3 kB
021.Bias vs. Variance/064. Learning Curves.srt
23.9 kB
005.Linear Algebra Review/015. Matrix Vector Multiplication.srt
23.4 kB
032.Density Estimation/091. Algorithm.srt
22.7 kB
009.Octave Matlab Tutorial/031. Control Statements for, while, if statement.srt
22.6 kB
024.Using Large Data Sets/070. Data For Machine Learning.srt
22.4 kB
040.Photo OCR/112. Ceiling Analysis What Part of the Pipeline to Work on Next.srt
22.3 kB
017.Cost Function and Backpropagation/052. Backpropagation Algorithm.srt
22.0 kB
015.Neural Networks/047. Model Representation II.srt
21.6 kB
023.Handling Skewed Data/068. Error Metrics for Skewed Classes.srt
21.3 kB
025.Large Margin Classification/072. Large Margin Intuition.srt
20.6 kB
031.Applying PCA/087. Choosing the Number of Principal Components.srt
20.4 kB
005.Linear Algebra Review/018. Inverse and Transpose.srt
20.3 kB
025.Large Margin Classification/071. Optimization Objective.srt
20.3 kB
023.Handling Skewed Data/069. Trading Off Precision and Recall.srt
20.1 kB
035.Predicting Movie Ratings/098. Content Based Recommendations.srt
20.0 kB
022.Building a Spam Classifier/067. Error Analysis.srt
19.8 kB
036.Collaborative Filtering/099. Collaborative Filtering.srt
19.5 kB
029.Motivation/082. Motivation I Data Compression.srt
19.4 kB
002.Introduction/004. Supervised Learning.srt
19.3 kB
013.Solving the Problem of Overfitting/041. Cost Function.srt
19.1 kB
022.Building a Spam Classifier/066. Prioritizing What to Work On.srt
19.0 kB
013.Solving the Problem of Overfitting/040. The Problem of Overfitting.srt
18.6 kB
014.Motivations/044. Non-linear Hypotheses.srt
18.4 kB
010.Classification and Representation/035. Decision Boundary.srt
18.3 kB
017.Cost Function and Backpropagation/053. Backpropagation Intuition.srt
18.1 kB
038.Gradient Descent with Large Datasets/104. Stochastic Gradient Descent.srt
18.0 kB
009.Octave Matlab Tutorial/032. Vectorization.srt
17.7 kB
018.Backpropagation in Practice/055. Gradient Checking.srt
17.4 kB
020.Evaluating a Learning Algorithm/061. Model Selection and Train Validation Test Sets.srt
17.3 kB
028.Clustering/081. Choosing the Number of Clusters.srt
17.3 kB
009.Octave Matlab Tutorial/029. Computing on Data.srt
17.1 kB
009.Octave Matlab Tutorial/030. Plotting Data.srt
16.7 kB
004.Parameter Learning/010. Gradient Descent.srt
16.7 kB
013.Solving the Problem of Overfitting/043. Regularized Logistic Regression.srt
16.6 kB
006.Multivariate Linear Regression/021. Gradient Descent in Practice I - Feature Scaling.srt
16.4 kB
004.Parameter Learning/011. Gradient Descent Intuition.srt
16.3 kB
035.Predicting Movie Ratings/097. Problem Formulation.srt
16.2 kB
038.Gradient Descent with Large Datasets/106. Stochastic Gradient Descent Convergence.srt
16.0 kB
037.Low Rank Matrix Factorization/102. Implementational Detail Mean Normalization.srt
16.0 kB
036.Collaborative Filtering/100. Collaborative Filtering Algorithm.srt
15.9 kB
014.Motivations/045. Neurons and the Brain.srt
15.8 kB
037.Low Rank Matrix Factorization/101. Vectorization Low Rank Matrix Factorization.srt
15.7 kB
028.Clustering/080. Random Initialization.srt
15.7 kB
032.Density Estimation/089. Problem Motivation.srt
15.5 kB
006.Multivariate Linear Regression/023. Features and Polynomial Regression.srt
15.3 kB
005.Linear Algebra Review/013. Matrices and Vectors.srt
15.3 kB
021.Bias vs. Variance/063. Regularization and Bias Variance.srt
15.3 kB
032.Density Estimation/090. Gaussian Distribution.srt
14.9 kB
015.Neural Networks/046. Model Representation I.srt
14.8 kB
013.Solving the Problem of Overfitting/042. Regularized Linear Regression.srt
14.5 kB
018.Backpropagation in Practice/054. Implementation Note Unrolling Parameters.srt
14.4 kB
011.Logistic Regression Model/037. Simplified Cost Function and Gradient Descent.srt
14.3 kB
040.Photo OCR/109. Problem Description and Pipeline.srt
14.2 kB
006.Multivariate Linear Regression/019. Multiple Features.srt
14.0 kB
005.Linear Algebra Review/016. Matrix Matrix Multiplication.srt
14.0 kB
004.Parameter Learning/012. Gradient Descent For Linear Regression.srt
13.7 kB
011.Logistic Regression Model/036. Cost Function.srt
13.7 kB
021.Bias vs. Variance/065. Deciding What to Do Next Revisited.srt
13.6 kB
030.Principal Component Analysis/084. Principal Component Analysis Problem Formulation.srt
13.4 kB
006.Multivariate Linear Regression/022. Gradient Descent in Practice II - Learning Rate.srt
12.8 kB
003.Model and Cost Function/008. Cost Function - Intuition I.srt
12.0 kB
020.Evaluating a Learning Algorithm/059. Deciding What to Try Next.srt
12.0 kB
005.Linear Algebra Review/017. Matrix Multiplication Properties.srt
11.8 kB
016.Applications/049. Examples and Intuitions II.srt
11.7 kB
010.Classification and Representation/033. Classification.srt
11.7 kB
005.Linear Algebra Review/014. Addition and Scalar Multiplication.srt
11.5 kB
033.Building an Anomaly Detection System/093. Anomaly Detection vs. Supervised Learning.srt
11.5 kB
021.Bias vs. Variance/062. Diagnosing Bias vs. Variance.srt
11.5 kB
002.Introduction/003. What is Machine Learning.srt
11.3 kB
020.Evaluating a Learning Algorithm/060. Evaluating a Hypothesis.srt
11.2 kB
003.Model and Cost Function/009. Cost Function - Intuition II.srt
11.0 kB
018.Backpropagation in Practice/056. Random Initialization.srt
10.6 kB
003.Model and Cost Function/007. Cost Function.srt
10.4 kB
010.Classification and Representation/034. Hypothesis Representation.srt
9.8 kB
029.Motivation/083. Motivation II Visualization.srt
9.8 kB
003.Model and Cost Function/006. Model Representation.srt
9.8 kB
002.Introduction/002. Welcome.srt
9.7 kB
028.Clustering/079. Optimization Objective.srt
9.5 kB
012.Multiclass Classification/039. Multiclass Classification One-vs-all.srt
9.5 kB
017.Cost Function and Backpropagation/051. Cost Function.srt
9.1 kB
007.Computing Parameters Analytically/025. Normal Equation Noninvertibility.srt
8.9 kB
016.Applications/048. Examples and Intuitions I.srt
8.7 kB
041.Conclusion/113. Summary and Thank You.srt
7.9 kB
038.Gradient Descent with Large Datasets/103. Learning With Large Datasets.srt
7.8 kB
038.Gradient Descent with Large Datasets/105. Mini-Batch Gradient Descent.srt
7.7 kB
016.Applications/050. Multiclass Classification.srt
7.2 kB
019.Application of Neural Networks/058. Autonomous Driving.srt
7.0 kB
006.Multivariate Linear Regression/020. Gradient Descent for Multiple Variables.srt
6.5 kB
031.Applying PCA/086. Reconstruction from Compressed Representation.srt
5.2 kB
028.Clustering/077. Unsupervised Learning Introduction.srt
5.1 kB
008.Submitting Programming Assignments/026. Working on and Submitting Programming Assignments.srt
4.4 kB
001.Welcome/001. Welcome to Machine Learning!.srt
2.4 kB
[FTU Forum].url
252 Bytes
[FreeCoursesOnline.Me].url
133 Bytes
[FreeTutorials.Us].url
119 Bytes
==查看完整文档列表==
上一个:
[SWITCH] Nerved (eShop)
5.9 GB
猜你喜欢
[FreeCoursesOnline.Us] Linkedin - Creating Your First...
337.8 MB
[FreeCoursesOnline.Me] eCom BluePrint By Gabriel St-Germain [FCO]
1.4 GB
[FreeCoursesOnline.Us] Lynda - Design the Web - Creating...
96.1 MB
[FreeCoursesOnline.Me] [LYNDA] 3ds Max Tips, Tricks and...
4.3 GB
[FreeCoursesOnline.Us] Pluralsight - Java Path - java-generics
823.8 MB
[FreeCoursesOnline.Me] Lynda - AutoCAD Importing a 2D...
294.8 MB
[FreeCoursesOnline.Me] [LYNDA] Illustrator CC 2019...
3.4 GB
[FreeCoursesOnline.Me] [FrontendMasters] TypeScript 3...
1.4 GB
[FreeCoursesOnline.Me] [VueSchool] Vue.js + Firebase...
296.7 MB
[FreeCoursesOnline.Me] [Packt] Learn to Build...
1.3 GB